Na+-Ca2+ exchange (NCX) current has been suggested to play a role in cardiac pacemaking, particularly in association with Ca2+ release from the sarcoplasmic reticulum (SR) that occurs just before the action potential upstroke. The present experiments explore in more detail the contribution of NCX to pacemaking. Na+-Ca2+ exchange current was inhibited by rapid switch to low-Na+ solution (with Li+ replacing Na+) within the time course of a single cardiac cycle to avoid slow secondary effects. Rapid switch to low-Na+ solution caused immediate cessation of spontaneous action potentials. ZD7288 (3 microM), to block I(f) (funny current) channels, slowed but did not stop the spontaneous activity, and tetrodotoxin (10 microM), to block Na+ channels, had little effect, but in the presence of either of these agents, rapid switch to low-Na+ solution again caused immediate cessation of spontaneous action potentials. Spontaneous electrical activity was also stopped following loading of the cells with the Ca2+ chelators BAPTA and EGTA, and by exposure to the NCX inhibitor KB-R7943 (5 microM). When rapid switch to low-Na+ solution caused cessation of spontaneous activity, this was found (using confocal microscopy, with fluo-4 as the Ca2+ probe) to be accompanied by an initial fall in cytosolic [Ca2+], with subsequent appearance of Ca2+ waves. Inhibition of SR Ca2+ uptake with cyclopiazonic acid (CPA, 30 microM) slowed but did not stop spontaneous activity. Rapid switch to low-Na+ solution in the presence of CPA caused abolition of spontaneous Ca2+ transients and a progressive rise in cytosolic [Ca2+]. With ratiometric fluorescence methods (indo-5F as the Ca2+ probe), the minimum level of [Ca2+] between beats was found to be approximately 225 nM, and abolition of beating with nifedipine, acetylcholine or adenosine caused a fall in cytosolic [Ca2+] below this level. These observations support the hypothesis that NCX current is essential for normal pacemaker activity under the conditions of our experiments. A continuous depolarizing influence of current through the NCX protein might result from maintained electrogenic NCX (with 3:1 stoichiometry, supported by a cytosolic [Ca2+] that normally does not fall below 225 nM between beats) and/or from a novel, recently suggested role of the NCX protein to allow a Na+ leak pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1805802PMC
http://dx.doi.org/10.1113/jphysiol.2005.100305DOI Listing

Publication Analysis

Top Keywords

rapid switch
20
switch low-na+
20
low-na+ solution
20
cytosolic [ca2+]
16
na+-ca2+ exchange
12
solution caused
12
caused cessation
12
cessation spontaneous
12
spontaneous activity
12
ncx current
8

Similar Publications

Spatiotemporal Mapping of Ultrafine Particle Fluxes in an Office HVAC System with a Diffusion Charger Sensor Array.

ACS EST Air

January 2025

Lyles School of Civil & Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States.

Commercial HVAC systems intended to mitigate indoor air pollution are operated based on standards that exclude aerosols with smaller diameters, such as ultrafine particles (UFPs, D ≤ 100 nm), which dominate a large proportion of indoor and outdoor number-based particle size distributions. UFPs generated from occupant activities or infiltrating from the outdoors can be recirculated and accumulate indoors when they are not successfully filtered by an air handling unit. Monitoring UFPs in real occupied environments is vital to understanding these source and mitigation dynamics, but capturing their rapid transience across multiple locations can be challenging due to high-cost instrumentation.

View Article and Find Full Text PDF

Magnetic Bistable Dome Actuators for Soft Robotics with High Volume Capacity and Motion Stability.

ACS Appl Mater Interfaces

January 2025

Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, P.R. China.

Magneto-responsive soft actuators hold significant promise in soft robotics due to their rapid responsiveness and untethered operation. However, controlling their deformations presents challenges because of their inherent flexibility and high degrees of freedom. Here, we present a magnetically driven bistable dome-shaped soft actuator that simplifies deformation by limiting it to two distinct states.

View Article and Find Full Text PDF

Purpose: The potential of spectral images, particularly electron density and effective Z-images, generated by dual-energy computed tomography (DECT), for the histopathologic classification of lung cancer remains unclear. This study aimed to explore which imaging factors could better reflect the histopathological status of lung cancer.

Method: The data of 31 patients who underwent rapid kV-switching DECT and subsequently underwent surgery for lung cancer were analyzed.

View Article and Find Full Text PDF

The persistent emergence of COVID-19 variants and recurrent waves of infection worldwide underscores the urgent need for vaccines that effectively reduce viral transmission and prevent infections. Current intramuscular (IM) COVID-19 vaccines inadequately protect the upper respiratory mucosa. In response, we have developed a nonadjuvanted, interferon-armed SARS-CoV-2 fusion protein vaccine with IM priming and intranasal (IN) boost sequential immunization.

View Article and Find Full Text PDF

The Photoinduced Response of Antimony from Femtoseconds to Minutes.

Adv Mater

January 2025

Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, 48149, Münster, Germany.

As a phase change material (PCM), antimony exhibits a set of desirable properties that make it an interesting candidate for photonic memory applications. These include a large optical contrast between crystalline and amorphous solid states over a wide wavelength range. Switching between the states is possible on nanosecond timescales by applying short heating pulses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!