The Kell blood group protein is a metalloendopeptidase that preferentially cleaves a Trp(21)-Ile(22) bond of big endothelin-3 producing bioactive endothelin-3. Kell is a polymorphic protein, and 25 different phenotypes, because of point mutations resulting in single amino acid substitutions, have been described. It was recently reported that a recombinant form of KEL1 (K, K1) phenotype, expressed in K562 and HEK293 cells, had no endothelin-3-converting activity, in contrast to the common KEL2 (k, K2) phenotype. We demonstrate that KEL1 red blood cells and also a soluble recombinant form of KEL1 protein (s-Kell KEL1) have similar enzymatic activity as the common Kell phenotype. In addition we show that KEL6 red blood cells, which are more prevalent in persons of African heritage than in Caucasians also have endothelin-3-converting enzyme activity and that the recombinant soluble form of KEL6 protein (s-Kell KEL6) has similar K(m) values as the wild-type.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M507776200DOI Listing

Publication Analysis

Top Keywords

endothelin-3-converting enzyme
8
enzyme activity
8
kell blood
8
blood group
8
recombinant form
8
form kel1
8
red blood
8
blood cells
8
protein s-kell
8
kel1
5

Similar Publications

McLeod neuroacanthocytosis syndrome (MLS) is a rare X-linked multisystem disease caused by XK gene mutations and characterized by hematological and neurological abnormalities. XK, a putative membrane transporter, is expressed ubiquitously and is covalently linked to Kell, an endothelin-3-converting enzyme (ECE-3). Absence of XK results in reduction of Kell at sites where both proteins are coexpressed.

View Article and Find Full Text PDF

Kell (ECE-3), a highly polymorphic blood group glycoprotein, displays more than 30 antigens that produce allo-antibodies and, on red blood cells (RBCs), is complexed through a single disulfide bond with the integral membrane protein, XK. XK is a putative membrane transporter whose absence results in a late onset form of neuromuscular abnormalities known as the McLeod syndrome. Although Kell glycoprotein is known to be an endothelin-3-converting enzyme, the full extent of its physiological function is unknown.

View Article and Find Full Text PDF

Expression profiles of mouse Kell, XK, and XPLAC mRNA.

J Histochem Cytochem

April 2007

The New York Blood Center, 310 East 67th Street, New York, NY 10021, USA.

Kell and XK are related because in red cells they exist as a disulfide-bonded complex. Kell is an endothelin-3-converting enzyme, and XK is predicted to be a transporter. Absence of XK, which is accompanied by reduced Kell on red cells, results in acanthocytosis and late-onset forms of central nervous system and neuromuscular abnormalities that characterize the McLeod syndrome.

View Article and Find Full Text PDF

Background: The Kell blood group system consists of 25 antigens that result from single-nucleotide polymorphisms. Most polymorphic Kell antigens reside on the N-terminal domain of Kell before the zinc-binding catalytic motif, which is the major site for endothelin-3-converting enzyme activity. Kell antigens are important in transfusion medicine owing to their strong immunogenicity, and the corresponding antibodies are clinically significant.

View Article and Find Full Text PDF

The Kell blood group protein is a metalloendopeptidase that preferentially cleaves a Trp(21)-Ile(22) bond of big endothelin-3 producing bioactive endothelin-3. Kell is a polymorphic protein, and 25 different phenotypes, because of point mutations resulting in single amino acid substitutions, have been described. It was recently reported that a recombinant form of KEL1 (K, K1) phenotype, expressed in K562 and HEK293 cells, had no endothelin-3-converting activity, in contrast to the common KEL2 (k, K2) phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!