Fluorescent quantum dots (semiconductor nanocrystals) have the potential to revolutionize biological imaging, but their use has been limited by difficulties in obtaining quantum dots that are water soluble and biocompatible. The objectives of our research were to develop a methodology for encapsulation of cadnium-selenium (CdSe) quantum dots (QDs) in phospholipid nanoemulsion that mimics the natural lipoprotein core and to study their interactions with cultured non-small cell lung cancer cells (NSCLC). We found that CdSe QDs can be efficiently encapsulated in the phospholipid nanoemulsion. The QD nanoemulsion has a particle size approximately 80 nm and appears physically stable. The QD nanoemulsion interacts well with cells. The intensity of cellular fluorescence imaging increases with the cell incubation time, indicating more QDs were taken up by the cells, respectively. Two types of fluorescence microscopies confirm that QDs are primarily localized in the cytoplasm but not in the nucleus of the cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10717540500394695 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!