Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Based on the series of benzene adsorption and related enthalpy of adsorption data measured on porous carbons that possess various porous structures, we show that the creation of a solidlike structure in pores depends on the average pore diameter of an adsorbent. Taking into account the solidlike adsorbed phase in the thermodynamic description of the adsorption process via the formalism of the theory of volume filling of micropores (TVFM) leads to very good agreement between the data measured experimentally and those calculated from TVFM. Finally we show that the boundary between solidlike and liquidlike structures of benzene molecules in carbon pores is located around the average pore diameter, close to ca. 2.1-2.4 nm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2005.12.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!