Amelioration of autoimmune neuroinflammation by recombinant human alpha-fetoprotein.

Exp Neurol

Laboratory of Neuroimmunology, Department of Neurology, the Agnes-Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem 91120, Israel.

Published: March 2006

Alpha-fetoprotein (AFP) is a 65-kDa oncofetal glycoprotein found in fetal and maternal fluids during pregnancy. Clinical remissions during pregnancy have been observed in several autoimmune diseases, such as multiple sclerosis (MS), and have been attributed to the presence of pregnancy-associated natural immune-reactive substances, including AFP which can exert immunomodulatory effects on immune cells. In this study, we tested the effect of recombinant human AFP (rhAFP) isolated from transgenic goats, which contain the genomic DNA for hAFP, on experimental autoimmune encephalomyelitis (EAE), the animal model used for the study of MS. RhAFP treatment markedly improved the clinical manifestations of EAE, preventing central nervous system (CNS) inflammation and axonal degeneration. RhAFP exerted a broad immunomodulating activity, influencing the various populations of immune cells. T cells from treated mice had significantly reduced activity towards the encephalitogenic peptide of myelin oligodendrocyte glycoprotein (MOG), exhibiting less proliferation and reduced Th1 cytokine secretion. Moreover, AFP affected the humoral response, causing an inhibition in MOG-specific antibody production. The expression of CD11b, MHC class II and the chemokine receptor CCR5 was also down-regulated. This is the first study demonstrating reduced inflammation and axonal damage exerted by recombinant AFP. In light of our findings, rhAFP may serve as a potential candidate for treatment of MS and other autoimmune diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2005.11.012DOI Listing

Publication Analysis

Top Keywords

recombinant human
8
autoimmune diseases
8
immune cells
8
inflammation axonal
8
afp
5
amelioration autoimmune
4
autoimmune neuroinflammation
4
neuroinflammation recombinant
4
human alpha-fetoprotein
4
alpha-fetoprotein alpha-fetoprotein
4

Similar Publications

Accumulating evidence indicates that cellular senescence is closely associated with osteoarthritis. However, there is limited research on the mechanisms underlying fibroblast-like synoviocyte senescence and its impact on osteoarthritis progression. Here, we elucidate a positive correlation between fibroblast-like synoviocyte senescence and osteoarthritis progression and reveal that GATD3A deficiency induces fibroblast-like synoviocyte senescence.

View Article and Find Full Text PDF

Trivalent recombinant protein vaccine induces cross-neutralization against XBB lineage and JN.1 subvariants: preclinical and phase 1 clinical trials.

Nat Commun

December 2024

Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.

The immune escape capacities of XBB variants necessitate the authorization of vaccines with these antigens. In this study, we produce three recombinant trimeric proteins from the RBD sequences of Delta, BA.5, and XBB.

View Article and Find Full Text PDF

Multicopy subtelomeric genes underlie animal infectivity of divergent Cryptosporidium hominis subtypes.

Nat Commun

December 2024

State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.

The anthroponotic Cryptosporidium hominis differs from the zoonotic C. parvum in its lack of infectivity to animals, but several divergent subtypes have recently been found in nonhuman primates and equines. Here, we sequence 17 animal C.

View Article and Find Full Text PDF

AAV vectors show promise for gene therapy; however, kidney gene transfer remains challenging. Here we conduct a barcode-seq-based comparison of 47 AAV capsids administered through different routes in mice, followed by individual validation. We find that local delivery of AAV-KP1, but not AAV9, via the renal vein or pelvis effectively transduces proximal tubules with minimal off-target liver transduction, while systemic AAV9, but not AAV-KP1, enhances proximal tubule and podocyte transduction in chronic kidney disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!