A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Alteration and resilience of the soil microbial community following compost amendment: effects of compost level and compost-borne microbial community. | LitMetric

Compost amendment has been reported to impact soil microbial activities or community composition. However, little information is available on (i) to what extent compost amendment concurrently affects the activity, size and composition of soil microbial community, (ii) the relative effect of the addition of a material rich in organic matter versus addition of compost-borne microorganisms in explaining the effects of amendment and (iii) the resilience of community characteristics. We compared five treatments in microcosms: (i) control soil (S), (ii) soil + low level of compost (Sc), (iii) soil + high level of compost (SC), (iv) sterilized soil + high level of compost [(S)C] and (v) soil + high level of sterilized compost [S(C)]. The actual C mineralization rate, substrate-induced respiration, size of microbial community (biomass and heterotrophic cells number), and structure of total microbial (phospholipid fatty acids) and bacterial (automated ribosomal intergenic spacer analysis, A-RISA) communities were surveyed during 6 months after amendment. Our results show that (i) compost amendment affected the activity, size and composition of the soil microbial community, (ii) the effect of compost amendment was mainly due to the physicochemical characteristics of compost matrix rather than to compost-borne microorganisms and (iii) no resilience of microbial characteristics was observed 6-12 months after amendment with a high amount of compost.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-2920.2005.00892.xDOI Listing

Publication Analysis

Top Keywords

microbial community
20
compost amendment
20
soil microbial
16
compost
12
community compost
12
level compost
12
soil high
12
high level
12
soil
9
microbial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!