A series of pot and field experiments and field demonstrations showed that in comparing with the commonly used specific-fertilizers containing same amounts of nutrients, single basal application of rice-specific controlled release fertilizer could increase the use efficiency of N and P by 12.2% - 22.7% and 7.0% - 35.0%, respectively in pot experiment, and the use efficiency of N by 17.1% in field experiment. In 167 field demonstrations successively conducted for 3 years in various rice production areas of Guangdong Province, single basal application of the fertilizer saved the application rate of N and P by 22.1% and 21.8%, respectively, and increased the yield by 8.2%, compared with normal split fertilization.

Download full-text PDF

Source

Publication Analysis

Top Keywords

single basal
12
basal application
12
controlled release
8
field demonstrations
8
[nutrient efficiency
4
efficiency yield-increasing
4
yield-increasing single
4
application
4
application rice
4
rice specific
4

Similar Publications

First Report of Causing Leaf Blight on in China.

Plant Dis

December 2024

Chiang Mai University, Biology, Room 2410/00, SCB2 building, Faculty of Science, Chiang Mai University,239 Huay Kaew Road, Suthep, Muang, Chiang Mai Province, Thailand, 50200;

Peacock plant (Calathea orbifolia (Linden) H.A.Kenn.

View Article and Find Full Text PDF

Background: Eosinophilic esophagitis (EoE) is a chronic T helper type 2 (Th2)-associated inflammatory disorder triggered by food allergens, resulting in esophageal dysfunction through edema, fibrosis, and tissue remodeling. The role of epithelial remodeling in EoE pathogenesis is critical but not fully understood.

Objective: To investigate the role of epithelial IKKβ/NFκB signaling in EoE pathogenesis using a mouse model with conditional Ikkβ knockout in esophageal epithelial cells (Ikkβ).

View Article and Find Full Text PDF

Transcriptional regulation in the absence of inositol trisphosphate receptor calcium signaling.

Front Cell Dev Biol

December 2024

MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States.

The activation of IP receptor (IPR) Ca channels generates agonist-mediated Ca signals that are critical for the regulation of a wide range of biological processes. It is therefore surprising that CRISPR induced loss of all three IPR isoforms (TKO) in HEK293 and HeLa cell lines yields cells that can survive, grow and divide, albeit more slowly than wild-type cells. In an effort to understand the adaptive mechanisms involved, we have examined the activity of key Ca dependent transcription factors (NFAT, CREB and AP-1) and signaling pathways using luciferase-reporter assays, phosphoprotein immunoblots and whole genome transcriptomic studies.

View Article and Find Full Text PDF

The output of the basal ganglia to the corticothalamic system plays an important role in regulating absence seizures. Inspired by experiments, we systematically study the crucial roles of two newly identified direct inhibitory striatal-cortical projections that project from the striatal D1 nucleus (SD1) and striatal D2 nucleus (SD2) to the cerebral cortex, in controlling absence seizures. Through computational simulation, we observe that typical 2-4 Hz spike and wave discharges (SWDs) can be induced through the pathological mechanism of cortical circuits, and both enhancing the inhibitory coupling weight on the striatal-cortical projections and improving the discharge activation level of striatal populations can effectively control typical SWDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!