Study of the injection molding of a polarizing beam splitter.

Appl Opt

Departamento de Eletrônica e Microeletrônica-Faculdade de Engenharia Elétrica e de Computação-Universidade Estadual de Campinas, C.P. 6101, 13083-970 Campinas, Brasil.

Published: January 2006

We describe the replication of a relief grating that behaves like a polarizing beam splitter by injection molding. Measurements of the grating master, nickel shim, and replica, performed by atomic force microscopy, allow establishing a limit for the injection molding technique (currently used in CD fabrication) to aspect ratios of approximately 0.15. Although this limit strongly reduces the diffraction efficiency of the elements as well as their polarizing properties, extinction ratios of approximately 10:1 were measured for the replicas in a large range of wavelengths.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.45.000100DOI Listing

Publication Analysis

Top Keywords

injection molding
12
polarizing beam
8
beam splitter
8
study injection
4
molding polarizing
4
splitter describe
4
describe replication
4
replication relief
4
relief grating
4
grating behaves
4

Similar Publications

Insulin-secreting allogeneic cell therapies are a promising treatment for type 1 diabetes, with the potential to eliminate hypoglycemia and long-term complications of the disease. However, chronic systemic immunosuppression is necessary to prevent graft rejection, and the acute risks associated with immunosuppression limit the number of patients who can be treated with allogeneic cell therapies. Islet macroencapsulation in a hydrogel biomaterial is one proposed method to reduce or eliminate immune suppression; however, macroencapsulation devices suffer from poor oxygen transport and limited efficacy as they scale to large animal model preclinical studies and clinical trials.

View Article and Find Full Text PDF

MiR8523 negatively regulates the immunity of Plutella xylostella against entomopathogenic fungus Isaria cicadae by targeting PxSpz5.

Int J Biol Macromol

January 2025

Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China. Electronic address:

The diamondback moth, Plutella xylostella is a notorious pest and has developed serious resistance to insecticides. Entomopathogenic fungi (EPF) have been developed as eco-friendly alternatives to insecticides. Insects rely on their immunity to defend against fungi.

View Article and Find Full Text PDF

An integrated magnetoimpedance biosensor microfluidic magnetic platform for the evaluation of the cardiac marker cTnI.

Anal Methods

January 2025

Microelectronic Research & Development Center, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.

An integrated magnetoimpedance (MI) biosensor microfluidic magnetic platform was proposed for the evaluation of the cardiac marker, cardiac troponin I (cTnI). This bioanalyte evaluation platform mainly comprised three external permanent magnets (PMs), one MI element, two peelable SiO film units and a microfluidic chip (MFC). The MI element was made of micro-electro-mechanical system (MEMS)-based multilayered [Ti (6 nm)/FeNi (100 nm)]/Cu (400 nm)/[Ti (6 nm)/FeNi (100 nm)] thin films and designed as meander structures with closed magnetic flux.

View Article and Find Full Text PDF

The escalating global demand for meat products has intensified ecological concerns, underscoring the need for sustainable meat alternatives. Although current methods effectively imitate ground meat, mimicking whole cuts, which constitute 54% of the global market, remains challenging due to the lack of scalable technology. Injection molding is a massively scalable manufacturing technology developed for the polymer industry.

View Article and Find Full Text PDF

Injection molded parts are increasingly utilized across various industries due to their cost-effectiveness, lightweight nature, and durability. However, traditional defect detection methods for these parts often rely on manual visual inspection, which is inefficient, expensive, and prone to errors. To enhance the accuracy of defect detection in injection molded parts, a new method called MRB-YOLO, based on the YOLOv8 model, has been proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!