The optimum profiles of right-angle-face anisotropically etched silicon surface-relief gratings illuminated at normal incidence for substrate-mode optical interconnects are determined for TE, TM, and random linear (RL) polarizations. A simulated annealing algorithm in conjunction with the rigorous coupled-wave analysis is used. The optimum diffraction efficiencies of the -1 forward-diffracted order are 37.3%, 67.1%, and 51.2% for TE-, TM-, and RL-polarization-optimized profiles, respectively. Also, the sensitivities to grating thickness, slant angle, and incident angle of the optimized profiles are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.45.000015 | DOI Listing |
Nanoscale Adv
January 2025
Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University Yoshida-honmachi, Sakyo-ku Kyoto 606-8501 Japan
Chemical etching of silicon assisted by graphene oxide (GO) has been attracting attention as a new method to fabricate micro- or nano-structures. GO promotes the reduction of an oxidant, and holes are injected into silicon, resulting in the preferential dissolution of the silicon under GO. In the conventional etching method with GO, the selectivity of the etching was low due to the stain etching caused by nitric acid.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, PR China. Electronic address:
Bacterial contamination is a very serious health and environmental problem, with the main source of toxicity being lipopolysaccharides in the cell walls of Gram-negative bacteria. Therefore, the development of effective analytical methods is crucial for the detection of lipopolysaccharide content. This work facilitates the efficient generation of precisely adjustable dual-mode signals for LPS detection in surface-enhanced Raman spectroscopy (SERS) and electrochemiluminescence (ECL) by inducing anisotropic morphological evolution of Au@Ag nanocubes (Au@AgNCs) through poly-cytosine (poly-C) DNA.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fudan University - Handan Campus: Fudan University, Department of Chemistry, 2205 Songhu Road, Laboratory of Advanced Materials, 200438, Shanghai, CHINA.
The synthesis of metal-organic frameworks (MOFs) with diverse geometries has captivated considerable interest due to their manifestation of novel and extraordinary properties. While much progress has been made in shaping regular polyhedral single-crystal MOFs, the creation of more complex, topologically intricate nanostructures remains a largely unexplored frontier. Here, we present a refined site-specific anisotropic assembly and etching co-mediation approach to fabricate a series of hierarchical MOF nanohybrids and single-crystal MOFs.
View Article and Find Full Text PDFNature
January 2025
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.
Proximity ferroelectricity is an interface-associated phenomenon in electric-field-driven polarization reversal in a non-ferroelectric polar material induced by one or more adjacent ferroelectric materials. Here we report proximity ferroelectricity in wurtzite ferroelectric heterostructures. In the present case, the non-ferroelectric layers are AlN and ZnO, whereas the ferroelectric layers are AlBN, AlScN and ZnMgO.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Achieving precise and cost-effective etching in the field of silicon three-dimensional (3D) structure fabrication remains a significant challenge. Here, we present the successful fabrication of microscale anisotropic Si structures with an etching anisotropy of 0.73 using Cu-metal-assisted chemical etching (Cu-MACE) and propose a mechanism to elucidate the chemical behavior of Cu within the MACE solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!