Objective: To clarify the effects of repetitive transcranial magnetic stimulation (rTMS) on rat motor cortical excitability and neurofunction after cerebral ischemia-reperfusion injury.

Methods: After determined awake resting motor threshold (MT) and motor evoked potentials (MEPs) of right hindlimbs, 20 Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) reperfusion injury, then rTMS were applied to rTMS group (n=10) at different time, while control group (n=10) received no stimulation. A week later, MT and MEPs were evaluated again, as well as neurological deficits and infarct volume. The effects of rTMS and MCAO reperfusion injury on these parameters were analyzed.

Results: After MCAO reperfusion, both MT level and neurological deficit scores increased, distinct focal infarction formed, and latency of MEP elongated. Compared with the control group, the increased extent of MT and neurological scores of rats receiving rTMS were significantly lower (P < 0.05), as well as the infarct volumes reduced significantly (P < 0.05). But MEP was not affected by rTMS obviously. There was a positive linear correlation between postinjury MT and infarct volume (r = 0.64, P < 0.05).

Conclusion: rTMS may facilitate neurofunction recovery after cerebral ischemia-reperfusion. Postinjury MT could provide prognostic information after MCAO reperfusion injury.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mcao reperfusion
16
cerebral ischemia-reperfusion
12
reperfusion injury
12
transcranial magnetic
8
magnetic stimulation
8
motor cortical
8
cortical excitability
8
excitability neurofunction
8
neurofunction cerebral
8
group n=10
8

Similar Publications

Objective: Hirudin has shown potential in promoting angiogenesis and providing neuroprotection in ischemic stroke; however, its therapeutic role in promoting cerebrovascular angiogenesis remains unclear. In this study, we aimed to investigate whether hirudin exerts neuroprotective effects by promoting angiogenesis through the regulation of the Wnt/β-catenin signaling pathway.

Methods: An in vitro model of glucose and oxygen deprivation/reperfusion (OGD/R) was established using rat brain microvascular endothelial cells (BMECs).

View Article and Find Full Text PDF

Elucidating Metabolite and pH Variations in Stroke through Guanidino, Amine and Amide CEST MRI: A Comparative Multi-Field Study at 9.4T and 3T.

Neuroimage

December 2024

F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Electronic address:

This study aims to investigate the variations in guanidino (Guan), amine and amide chemical exchange saturation transfer (CEST) contrasts in ischemic stroke using permanent middle cerebral artery occlusion (pMCAO) and transient MCAO (tMCAO) models at high (9.4T) and clinical (3T) MRI fields. CEST contrasts were extracted using the Polynomial and Lorentzian Line-shape Fitting (PLOF) method.

View Article and Find Full Text PDF

This study was to investigate the role of microRNA (miR)-330-5p derived from mesenchymal stem cells-secreted exosomes (MSCs-Exo) in cerebral ischemia-reperfusion injury (CI/RI) through targeting lysine N-methyltransferase SET domain containing 7 (SETD7). MSCs-Exo were separated and identified. MSCs-Exo were used to treat the middle cerebral artery occlusion (MCAO) rat model.

View Article and Find Full Text PDF

Classical prescription Daqinjiao decoction inhibit cerebral ischemia/reperfusion induced necroptosis and ferroptosis through multiple mechanisms.

J Ethnopharmacol

December 2024

Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China. Electronic address:

Article Synopsis
  • The Daqinjiao decoction (DQJT) has a long history of use in stroke treatment, but its mechanisms remained largely unknown before this study.
  • The study aimed to explore how DQJT alleviates brain injury caused by cerebral ischemia/reperfusion by using methods like HPLC for component analysis and MCAO/R models for efficacy testing.
  • Results indicated that DQJT effectively reduces brain damage and improves metabolic pathways, focusing on lipid metabolism and specific signaling pathways, ultimately revealing its role in inhibiting cell death processes through the modulation of several key pathways.
View Article and Find Full Text PDF

Background: Ischemic stroke (IS) is the leading cause of mortality worldwide. Herein, we aimed to identify novel biomarkers and explore the role of C-type lectin domain family 7 member A () in IS.

Methods: Differentially expressed genes (DEGs) were screened using the GSE106680, GSE97537, and GSE61616 datasets, and hub genes were identified through construction of protein-protein interaction networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!