Analog optical signal processing of complex radio-frequency signals for range-Doppler radar information is theoretically described and experimentally demonstrated using crystalline optical memory materials and off-the-shelf photonic components. A model of the range-Doppler processing capability of the memory material for the case of single-target detection is presented. Radarlike signals were emulated and processed by the memory material; they consisted of broadband (> 1 GHz), spread-spectrum, pseudorandom noise sequences of 512 bits in length, which were binary phase-shift keyed on a 1.9 GHz carrier and repeated at 100 kHz over 7.5 ms. Delay (range) resolution of 8 ns and Doppler resolution of 130 Hz over 100 kHz were demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.45.000343DOI Listing

Publication Analysis

Top Keywords

signal processing
8
optical memory
8
memory material
8
100 khz
8
multigigahertz range-doppler
4
range-doppler correlative
4
correlative signal
4
processing optical
4
memory
4
memory crystals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!