Transthyretin (TTR) amyloidosis, the most common form of hereditary systemic amyloidosis, is characterized clinically by adult-onset axonal neuropathy and restrictive cardiomyopathy. More than 85 mutations in transthyretin have been found to cause this hereditary disease. Since essentially all circulating TTR is of hepatic origin, orthotopic liver transplantation has been used as the only specific form of therapy. Unfortunately, in many patients amyloid deposition continues after orthotopic liver transplantation, indicating that mutant TTR is no longer required for progression of the disease after tissue deposits have been initiated. As a first step toward medical treatment of this disease, we have employed antisense oligonucleotides (ASOs) to inhibit hepatic expression of TTR. A transgenic mouse model carrying the human TTR Ile84Ser mutation was created and shown to express high levels of human mutant transthyretin. TTR ASOs suppressed hepatic TTR mRNA levels and serum TTR levels by as much as 80%. Suppression of hepatic synthesis of transthyretin may offer a medical treatment for transthyretin systemic amyloidosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mus.20503 | DOI Listing |
Nucleosides Nucleotides Nucleic Acids
January 2025
Faculty of Agriculture and Allied Sciences, C.V. Raman Global University, Bhubaneswar, India.
The field of biomedical science has witnessed another milestone with the advent of RNA-based therapeutics. This review explores three major RNA molecules, namely: messenger RNA (mRNA), RNA interference technology (RNAi), and Antisense Oligonucleotide (ASO), and analyses U.S.
View Article and Find Full Text PDFJ Transl Int Med
December 2024
Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, China.
Polycystic kidney disease (PKD) is a genetic disorder marked by numerous cysts in the kidneys, progressively impairing renal function. It is classified into autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), with ADPKD being more common. Current treatments mainly focus on symptom relief and slowing disease progression, without offering a cure.
View Article and Find Full Text PDFAgeing Res Rev
January 2025
i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), 28041 Madrid, Spain. Electronic address:
Accumulating evidence suggests that gut microbiota (GM) plays a crucial role in Alzheimer's disease (AD) pathogenesis and progression. This narrative review explores the complex interplay between GM, the immune system, and the central nervous system in AD. We discuss mechanisms through which GM dysbiosis can compromise intestinal barrier integrity, enabling pro-inflammatory molecules and metabolites to enter systemic circulation and the brain, potentially contributing to AD hallmarks.
View Article and Find Full Text PDFCell Rep Med
December 2024
Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan. Electronic address:
Duchenne muscular dystrophy (DMD) is a severe muscle disorder caused by mutations in the DMD gene, leading to dystrophin deficiency. Antisense oligonucleotide (ASO)-mediated exon skipping offers potential by partially restoring dystrophin, though current therapies remain mutation specific with limited efficacy. To overcome those limitations, we developed brogidirsen, a dual-targeting ASO composed of two directly connected 12-mer sequences targeting exon 44 using phosphorodiamidate morpholino oligomers.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, McGill University, 801, Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada.
Oligonucleotide therapeutics, including antisense oligonucleotides and small interfering RNA, offer promising avenues for modulating the expression of disease-associated proteins. However, challenges such as nuclease degradation, poor cellular uptake, and unspecific targeting hinder their application. To overcome these obstacles, spherical nucleic acids have emerged as versatile tools for nucleic acid delivery in biomedical applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!