Many of the proteins and their encoding genes involved in spermatogenesis are unknown, making the specific diagnosis and treatment of infertility in males difficult and highlighting the importance of identifying new genes that are involved in spermatogenesis. Through genome-wide chemical mutagenesis using N-ethyl-N-nitrosourea (ENU) and a three-generation breeding scheme to isolate recessive mutations, we have identified mouse lines with a range of abnormalities relevant to human male fertility. Abnormal phenotypes included hypospermatogenesis, Sertoli cell-only (SCO) seminiferous tubules, germ-cell arrest and abnormal spermiogenesis and were accompanied, in some, with abnormal serum levels of reproductive hormones. In total, from 65 mouse lines, 14 showed a reproductive phenotype consistent with a recessive mutation. This study shows that it is feasible to use ENU mutagenesis as an effective and rapid means of generating mouse models relevant to furthering our understanding of human male infertility. Spermatozoa and genomic DNA from all mouse lines, including those with abnormal reproductive tract parameters, have been cryopreserved for the regeneration of lines as required. This repository will form a valuable resource for the identification and analysis of key regulators of multiple aspects of male fertility.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molehr/gah251DOI Listing

Publication Analysis

Top Keywords

mouse lines
16
male fertility
12
genes involved
8
involved spermatogenesis
8
human male
8
mouse
5
lines
5
repository enu
4
enu mutant
4
mutant mouse
4

Similar Publications

Metastasis continues to pose a significant challenge in tumor treatment. Evidence indicates that choline dehydrogenase (CHDH) is crucial in tumorigenesis. However, the functional role of CHDH in colorectal cancer (CRC) metastasis remains unreported.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) and RNA N⁶-methyladenosine (m A) have been linked to leukemia drug resistance. However, whether and how lncRNAs and m A coordinately regulate resistance remain elusive. Here, we show that many differentially expressed lncRNAs enrich m A, and more lncRNAs tend to have higher m A content in CML cells resistant to tyrosine kinase inhibitors (TKIs).

View Article and Find Full Text PDF

Beta-propeller Protein Associated Neurodegeneration (BPAN) is a devastating neurodevelopmental and neurodegenerative disease linked to variants in . Currently, there is no cure or disease altering treatment for this disease. This is, in part, due to a lack of insight into early phenotypes of BPAN progression and 's role in establishing and maintaining neurological function.

View Article and Find Full Text PDF

Unlabelled: Although tryptophan (Trp) is the largest and most structurally complex amino acid, it is the least abundant in the proteome. Its distinct indole ring and high carbon content enable it to generate various biologically active metabolites such as serotonin, kynurenine (Kyn), and indole-3-pyruvate (I3P). Dysregulation of Trp metabolism has been implicated in diseases ranging from depression to cancer.

View Article and Find Full Text PDF

A large fraction of the genome interacts with the nuclear periphery through lamina-associated domains (LADs), repressive regions which play an important role in genome organization and gene regulation across development. Despite much work, LAD structure and regulation are not fully understood, and a mounting number of studies have identified numerous genetic and epigenetic differences within LADs, demonstrating they are not a uniform group. Here we profile Lamin B1, HP1β, H3K9me3, H3K9me2, H3K27me3, H3K14ac, H3K27ac, and H3K9ac in MEF cell lines derived from the same mouse colony and cluster LADs based on the abundance and distribution of these features across LADs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!