Melanin synthesis is essential for defense and development but must be tightly controlled because systemic hyperactivation of the prophenoloxidase and excessive melanin synthesis are deleterious to the hosts. The melanization cascade of the arthropods can be activated by bacterial lysine-peptidoglycan (PGN), diaminopimelic acid (DAP)-PGN, or fungal beta-1,3-glucan. The molecular mechanism of how DAP- or Lys-PGN induces melanin synthesis and which molecules are involved in distinguishing these PGNs are not known. The identification of PGN derivatives that can work as inhibitors of the melanization cascade and the characterization of PGN recognition molecules will provide important information to clarify how the melanization is regulated and controlled. Here, we report that a novel synthetic Lys-PGN fragment ((GlcNAc-MurNAc-L-Ala-D-isoGln-L-Lys-D-Ala)2, T-4P2) functions as a competitive inhibitor of the natural PGN-induced melanization reaction. By using a T-4P2-coupled column, we purified the Tenebrio molitor PGN recognition protein (Tm-PGRP) without causing activation of the prophenoloxidase. The purified Tm-PGRP recognized both Lys- and DAP-PGN. In vitro reconstitution experiments showed that Tm-PGRP functions as a common recognition molecule of Lys- and DAP-PGN-dependent melanization cascades.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M510058200DOI Listing

Publication Analysis

Top Keywords

melanization cascade
12
melanin synthesis
12
competitive inhibitor
8
pgn recognition
8
melanization
6
synthetic peptidoglycan
4
peptidoglycan fragment
4
fragment competitive
4
inhibitor melanization
4
cascade melanin
4

Similar Publications

Serpins (serine protease inhibitors) constitute a superfamily of proteins with functional diversity and unusual conformational flexibility. In insects, serpins act as multiple inhibitors, by forming inactive acyl-enzyme complexes, in regulating Spätzles activation, phenoloxidases (POs) activity, and other cytokines. In this study, we present the cloning and characterization of Octodonta nipae serpin2 (OnSPN2), a 415 residues protein homologous to Tenebrio molitor 42Dd-like.

View Article and Find Full Text PDF

CLIPA protein pairs function as cofactors for prophenoloxidase activation in Anopheles gambiae.

Insect Biochem Mol Biol

January 2025

Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA. Electronic address:

Insect prophenoloxidases (proPO) are activated during immune responses by a proPO activating protease (PAP) in the presence of a high molecular weight cofactor assembled from serine protease homologs (SPH) that lack proteolytic activity. PAPs and the SPHs have a similar architecture, with an amino-terminal clip domain and a carboxyl-terminal protease domain. The SPHs belong to CLIPA subfamily of SP-related proteins.

View Article and Find Full Text PDF

Flexible or fortified? How lichens balance defence strategies across climatic harshness gradients.

New Phytol

January 2025

Amsterdam Institute for Life and Environment (A-LIFE), Section Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands.

Lichens play important roles in habitat formation and community succession in polar and alpine ecosystems. Despite their significance, the ecological effects of lichen traits remain poorly researched. We propose a trait trade-off for managing light exposure based on climatic harshness.

View Article and Find Full Text PDF

Hemolymph protease-17b activates proHP6 to stimulate melanization and Toll signaling in Manduca sexta.

Insect Biochem Mol Biol

November 2024

Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA. Electronic address:

Article Synopsis
  • The study focuses on Manduca sexta hemolymph protease-6 (HP6), which plays a key role in activating immune responses, particularly in the processes known as prophenoloxidase (PPO) activation and Toll signaling.
  • Researchers identified HP17b as a new enzyme that activates HP6 and found it is regulated by several serpins within the insect's hemolymph, demonstrating a complex interplay of proteins involved in immune responses.
  • The findings revealed that HP17b can directly activate other proteases and factors that contribute to PPO activation, while specific serpins can inhibit HP17b's activity, indicating a balance of activation and regulation crucial for the insect's immune
View Article and Find Full Text PDF

Serine protease cascades regulate key innate immune responses. In mosquitoes, these cascades involve clip-domain serine proteases and their non-catalytic homologs (CLIPs), forming a complex network whose make-up and structural organization is not fully understood. This study assessed the impact of 85 CLIPs on humoral immunity in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!