For multi-probe-labeling fluorescence in situ hybridization (FISH), a digital imaging procedure was developed consisting of systematic background noise reduction and target signal equalization using a hue, saturation, value color partitioning technique. By the combined application of seven DNA probes, each labeled with three fluorochromes at maximum, seven kinds of cultured type strains were distinguished in a microscopic field simultaneously. Using this seven-probe-labeling FISH (Rainbow-FISH), several phylogenetic groups of microbes that occur frequently in aquatic environments, such as Alpha-, Beta- and Gammaproteobacteria, Cytophaga-Flavobacterium and Actinobacteria, were identified and quantified. The total counts of cells specified by Rainbow-FISH were in the range of 96-108% of those of general FISH, showing that the method is highly reliable for quantitative population analysis. Analyzing samples obtained at points along a river to a sea, we found a reverse population change in two groups: apparent decreases in Betaproteobacteria but gradual increases in Gammaproteobacteria. This method provides a platform toward the improvement of semiautomatic analysis of aquatic microbes under various metabolic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6941.2005.00013.xDOI Listing

Publication Analysis

Top Keywords

digital imaging
8
imaging procedure
8
seven-probe-labeling fish
8
fish rainbow-fish
8
procedure seven-probe-labeling
4
fish
4
rainbow-fish application
4
application estuarine
4
estuarine microbial
4
microbial communities
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!