We recently reported the unprecedented occurrence of a hemoglobin gene (glob1) in the fruitfly Drosophila melanogaster. Here we investigate the structure and evolution of the glob1 gene in other Drosophila species. We cloned and sequenced glob1 genes and cDNA from D. pseudoobscura and D. virilis, and identified the glob1 gene sequences of D. simulans, D. yakuba, D. erecta, D. ananassae, D. mojavensis and D. grimshawi in the databases. Gene structure (introns in helix positions D7.0 and G7.0), gene synteny and sequence of glob1 are highly conserved, with high ds/dn ratios indicating strong purifying selection. The data suggest an important role of the glob1 protein in Drosophila, which may be the control of oxygen flow from the tracheal system. Furthermore, we identified two additional globin genes (glob2 and glob3) in the Drosophilidae. Although the sequences are highly derived, the amino acids required for heme- and oxygen-binding are conserved. In contrast to other known insect globin, the glob2 and glob3 genes harbour both globin-typical introns at positions B12.2 and G7.0. Both genes are conserved in various drosophilid species, but only expression of glob2 could be demonstrated by western blotting and RT-PCR. Phylogenetic analyses show that the clade leading to glob2 and glob3, which are sistergroups, diverged first in the evolution of dipteran globins. glob1 is closely related to the intracellular hemoglobin of the botfly Gasterophilus intestinalis, and the extracellular hemoglobins from the chironomid midges derive from this clade.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-4658.2005.05073.x | DOI Listing |
Exp Cell Res
May 2018
Department of Genetics, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India. Electronic address:
Hemoglobins (Hbs) are evolutionarily conserved small globular proteins with characteristic 3-over-3 α-helical sandwich structure that is typically known as "globin fold". Hbs have been found to be involved in diverse biological functions and the characteristic property of oxygen transportation is relatively a recent adaptation. Drosophila genome possesses three globin genes (glob1, glob2, and glob3) and it was previously reported that adequate expression of glob1 is required for various aspects of development, and also to regulate the cellular level of reactive oxygen species (ROS).
View Article and Find Full Text PDFJ Insect Physiol
April 2018
Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, University of Mainz, D-55128 Mainz, Germany.
In contrast to long-held assumptions, the gene repertoire of most insects includes hemoglobins. Analyses of the genome of the fruitfly Drosophila melanogaster identified three distinct hemoglobin genes (glob1, glob2, and glob3). While glob1 is predominantly associated with the tracheal system and fat body, glob2 and glob3 are almost exclusively expressed in the testis.
View Article and Find Full Text PDFDev Dyn
November 2016
Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India.
Background: Hemoglobins (Hbs) are evolutionarily conserved heme-containing metallo-proteins of the Globin protein family that harbour the characteristic "globin fold." Hemoglobins have been functionally diversified during evolution and their usual property of oxygen transport is rather a recent adaptation. Drosophila genome possesses three globin genes (glob1, glob2, and glob3), and we have reported earlier that adequate expression of glob1 is required for various aspects of development, as well as to regulate the cellular level of reactive oxygen species (ROS).
View Article and Find Full Text PDFGenesis
December 2015
Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, India.
Biological significance of the globin protein family could be ascertained by their conservation through archaea to human. Globin(s) have been "classically" studied as oxygen binding protein(s), with recent implications in a host of other physiological functions. Drosophila melanogaster possesses three globin genes (glob1, glob2, glob3) located at different cytogenetic positions.
View Article and Find Full Text PDFBMC Evol Biol
March 2012
Institute of Molecular Genetics, University of Mainz, 55099 Mainz, Germany.
Background: For a long time the presence of respiratory proteins in most insects has been considered unnecessary. However, in recent years it has become evident that globins belong to the standard repertoire of the insect genome. Like most other insect globins, the glob1 gene of Drosophila melanogaster displays a conserved expression pattern in the tracheae, the fat body and the Malpighian tubules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!