Neurogenic niche modulation by activated microglia: transforming growth factor beta increases neurogenesis in the adult dentate gyrus.

Eur J Neurosci

Laboratory of Neuromodulation, Leloir Institute, CONICET-UBA, University of Buenos Aires, 435 Av Patricias Argentinas, Buenos Aires 1405, Argentina.

Published: January 2006

Adult neural stem cells (NSC) proliferate and differentiate depending on the composition of the cellular and molecular niche in which they are immersed. Until recently, microglial cells have been ignored as part of the neurogenic niche. We studied the dynamics of NSC proliferation and differentiation in the dentate gyrus of the hippocampus (DG) and characterized the changes of the neurogenic niche in adrenalectomized animals (ADX). At the cellular level, we found increased NSC proliferation and neurogenesis in the ADX animals. In addition, a morphologically distinct subpopulation of NSC (Nestin+/GFAP-) with increased proliferating profile was detected. Interestingly, the number of microglial cells at stages 2 and 3 of activation correlated with increased neurogenesis (r2 = 0.999) and the number of Nestin-positive cells (r2 = 0.96). At the molecular level, transforming growth factor beta (TGF-beta) mRNA levels were increased 10-fold in ADX animals. Interestingly, TGF-beta levels correlated with the amount of neurogenesis detected (r2 = 0.99) and the number of stage 2 and 3 microglial cells (r2 = 0.94). Furthermore, blockade of TGF-beta biological activity by administration of an anti-TGF-beta type II receptor antibody diminished the percentage of 5-bromo-2'-deoxyuridine (BrdU)/PSA-NCAM-positive cells in vivo. Moreover, TGF-beta was able to promote neurogenesis in NSC primary cultures. This work supports the idea that activated microglial cells are not pro- or anti-neurogenic per se, but the balance between pro- and anti-inflammatory secreted molecules influences the final effect of this activation. Importantly, we identified an anti-inflammatory cytokine, TGF-beta, with neurogenic potential in the adult brain.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2005.04539.xDOI Listing

Publication Analysis

Top Keywords

microglial cells
16
neurogenic niche
12
transforming growth
8
growth factor
8
factor beta
8
dentate gyrus
8
nsc proliferation
8
adx animals
8
cells
7
neurogenesis
5

Similar Publications

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

There are few in vitro models available to study microglial physiology in a homeostatic context. Recent approaches include the human induced pluripotent stem cell model, but these can be challenging for large-scale assays and may lead to batch variability. To advance our understanding of microglial biology while enabling scalability for high-throughput assays, we developed an inducible immortalized murine microglial cell line using a tetracycline expression system.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.

View Article and Find Full Text PDF

Orthoflaviviruses are emerging arthropod-borne pathogens whose replication cycle is tightly linked to host lipid metabolism. Previous lipidomic studies demonstrated that infection with the closely related hepatitis C virus (HCV) changes the fatty acid (FA) profile of several lipid classes. Lipids in HCV-infected cells had more very long-chain and desaturated FAs and viral replication relied on functional FA elongation and desaturation.

View Article and Find Full Text PDF

Cell-cell communications in the brain of hepatic encephalopathy: The neurovascular unit.

Life Sci

January 2025

Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea; Research Institute for Biomedical & Health Science (RIBHS), Konkuk University, Chungju, Republic of Korea. Electronic address:

Many patients with liver diseases are exposed to the risk of hepatic encephalopathy (HE). The incidence of HE in liver patients is high, showing various symptoms ranging from mild symptoms to coma. Liver transplantation is one of the ways to overcome HE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!