Type 1 fimbriae of Escherichia coli mediate mannose-specific adhesion to host epithelial surfaces and consist of a major, antigenically variable pilin subunit, FimA, and a minor, structurally conserved adhesive subunit, FimH, located on the fimbrial tip. We have analysed the variability of fimA and fimH in strains of vaginal and other origin that belong to one of the most prominent clonal groups of extraintestinal pathogenic E. coli, comprised of O1:K1-, O2:K1- and O18:K1-based serotypes. Multiple locus sequence typing (MLST) of this group revealed that the strains have identical (at all but one nucleotide position) eight housekeeping loci around the genome and belong to the ST95 complex defined by the publicly available E. coli MLST database. Multiple highly diverse fimA alleles have been introduced into the ST95 clonal complex via horizontal transfer, at a frequency comparable to that of genes defining the major O- and H-antigens. However, no further significant FimA diversification has occurred via point mutation after the transfers. In contrast, while fimH alleles also move horizontally (along with the fimA loci), they acquire point amino acid replacements at a higher rate than either housekeeping genes or fimA. These FimH mutations enhance binding to monomannose receptors and bacterial tropism for human vaginal epithelium. A similar pattern of rapid within-clonal structural evolution of the adhesive, but not pilin, subunit is also seen, respectively, in papG and papA alleles of the di-galactose-specific P-fimbriae. Thus, while structurally diverse pilin subunits of E. coli fimbriae are under selective pressure for frequent horizontal transfer between clones, the adhesive subunits of extraintestinal E. coli are under strong positive selection (Dn/Ds > 1 for fimH and papG) for functionally adaptive amino acid replacements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1380272 | PMC |
http://dx.doi.org/10.1111/j.1365-2958.2005.04985.x | DOI Listing |
Nutrients
January 2025
Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
Non-celiac gluten/wheat sensitivity (NCGWS) is a syndrome for which pathogenesis and management remain debated. It is described as a condition characterized by gastrointestinal and extra-intestinal symptoms rapidly occurring after gluten ingestion in subjects who have had celiac disease or wheat allergy excluded. To date, the diagnosis of NCGWS is challenging as no universally recognized biomarkers have been yet identified, nor has a predisposing genetic profile been described.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department Poultry Health, Royal GD, 7418 EZ Deventer, The Netherlands.
Some strains of can cause spondylitis and bacterial osteomyelitis. Translocation and bacteremia are pivotal to the pathogenesis and clinical disease. Virulence typing to distinguish extra-intestinal disease of lesion from cloacal strains remains difficult.
View Article and Find Full Text PDFBr Poult Sci
January 2025
Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.
1. is an opportunist pathogen of animals, including food-producing ones and humans. Chickens may be a notable source of pathogenic and antimicrobial resistant for transmission to humans.
View Article and Find Full Text PDFBMC Genomics
January 2025
Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia.
Background: F plasmids are abundant in E. coli, carrying a variety of genetic cargo involved in fitness, pathogenicity, and antimicrobial resistance. ColV and pUTI89-like plasmids have drawn attention for their potential roles in various forms of extra-intestinal pathogenicity.
View Article and Find Full Text PDFFood Chem
January 2025
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China. Electronic address:
Bacteriophages are promising alternatives for combating multidrug-resistant bacterial infections. Two lytic bacteriophages, named P1 and P3, targeting pathogenic Escherichia coli (ExPEC; strain TZ1_3) were isolated and evaluated for their potential ability to control pathogenic numbers either in ExPEC-contaminated food or ExPEC-infected mice. Results showed that phages significantly reduced ExPEC numbers within 6 and 12 h in contaminated water, milk, beef, and chicken when applied at 10 plaque-forming units (PFU).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!