Photochemical internalization (PCI) is a targeting technique that facilitates endosomal escape of macromolecules, such as transgenes, in response to photochemical treatment with endosome/lysosome-localized photosensitizers, such as disulfonated meso-tetraphenylporphine (TPPS(2a)). In gene therapy this leads to enhanced transgene expression. Moreover, photochemical treatment generally activates transcription of stress-response genes, such as heat-shock proteins (HSPs), via stimulation of corresponding promoters. Therefore, we used HSP70 (HSPp; a promoter from the HSP family gene) and investigated whether the PCI stimulus could also activate HSPp and thereby stimulate transcription (expression) of the HSPp-controlled transgene internalized via PCI. Using human colorectal carcinoma and hepatoma cell lines in vitro, we showed that TPPS(2a)-based photochemical treatment enhances expression of cellular HSP70, which correlated with a photochemically enhanced expression (approximately 2-fold, at PCI-optimal doses) of the HSPp-controlled transgene integrated in the genome. Furthermore, PCI enhanced expression of the HSPp-controlled episomal transgene delivered as a plasmid. However, in plasmid-based transfection, PCI-mediated enhancement with HSPp did not exceed the enhancement achieved with the constitutive active CMV promoter. In conclusion, we demonstrated that the PCI-relevant treatment initiates HSP70 response and that the HSP70 promoter can be used in combination with PCI, leading to PCI-enhanced expression of the HSPp-controlled transgene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1562/2005-11-07-RA-731 | DOI Listing |
Profiles Drug Subst Excip Relat Methodol
January 2025
Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan.
This chapter presents an overall account of cyclodextrins (CDs) with a brief description of the history, classification, and properties of these macromolecules. CDs act as complexing agents for drugs to form CD-drug inclusion complexes by various techniques. These complexes lead to the modification of the physicochemical properties of drugs to make them more soluble, chemically, and photochemically stable, and less toxic.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
With the rapid development of modern science and technology and the diversification of social needs, traditional single-performance materials struggle to meet the complex and changeable application scenarios. To address the multifaceted requirements of biomedical applications, such as disease diagnosis and treatment, scientists are dedicated to developing new multifunctional biomaterials with multiple activities. BiTiO (BTO), despite its versatility and application potential, has insufficient photocatalytic performance.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
Sensitive and precise assay of prednisolone, a steroid hormone, has received great attention due to its significant role in the treatment of a series of diseases. In this study, we have developed a simple, quick, and accurate technique in this part to measure prednisolone. Cobalt 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (CoTPyP) as a mimic peroxidase catalyzes the chemiluminescence (CL) reaction of lucigenin for the first time.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Gaziantep University, Gaziantep, Turkey.
Background: This study evaluates the effects of ozone on hard and soft tissue healing when a free tissue flap is used to close wound areas lacking primary closure over autogenous grafted sites.
Methods: In our study, 24 male Wistar rats were divided into four groups: two control groups and two ozone-treated groups. All rats underwent the same surgical procedure.
Nano Lett
January 2025
School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China.
Eliminating cancer stem cells (CSCs) is essential for the effective treatment of triple-negative breast cancer (TNBC). This study synthesized Au@cerium-zinc composite core@shell nanoparticles (Au@Zn/CeO) that were subsequently conjugated with () to create the engineered bacterium AZCE, which was then combined with microneedle carriers and freeze-dried to obtain AZCE-MN. Upon implantation into TNBC tumors, the inherent properties of facilitate AZCE to penetrate the extracellular matrix and break through the basement membrane, enabling effective delivery of AZC to CSCs-enriched regions deep within the tumor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!