In this study, minimum audible angles (MAAs) of aerial pure tones were measured in and compared between a northern elephant seal (Mirounga angustirostris), a harbor seal (Phoca vitulina), and a California sea lion (Zalophus californianus). Testing was conducted between 0.8 and 16 kHz in the elephant seal and 0.8 and 20 kHz in the harbor seal and sea lion in a hemi-anechoic chamber using a left/right psychophysical procedure. Performance for the same frequencies was also quantified for discrete speaker separation of 5 degrees from the mid-line. For all subjects, MAAs ranged from approximately 3 degrees to 15 degrees and were generally equal to or larger than those previously measured in the same subjects with a broadband signal. Performance at 5 degrees ranged from chance to 97% correct, depending on frequency and subject. Poorest performance in the sea lion and harbor seal occurred at intermediate frequencies, which is consistent with the duplex theory of sound localization. In contrast, the elephant seal's poorest performance occurred at higher frequencies. The elephant seal's result suggests an inferior ability to utilize interaural level differences and is perhaps related to best hearing sensitivity shifted toward lower frequencies in this species relative to other pinnipeds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.2126931 | DOI Listing |
J Acoust Soc Am
January 2025
SEAMARCO, Julianalaan 46, 3843 CC Harderwijk, the Netherlands.
In their Comment, Tougaard et al. [(2025). J.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Department of Biology, University of Aarhus, Aarhus, 8000, Denmark.
Gransier and Kastelein [J. Acoust. Soc.
View Article and Find Full Text PDFSci Total Environ
January 2025
North Slope Borough, Department of Wildlife Management, Utqiaġvik, AK 99723, USA; Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99708, USA.
Ringed (Pusa hispida), bearded (Erignathus barbatus), spotted (Phoca largha), and ribbon (Histriophoca fasciata) seals are ice-associated seals that are important subsistence resources for coastal Alaska Native people. These seals are also mid- to upper trophic level Arctic predators and primary prey of polar bears (Ursus maritimus). We analyzed concentrations of 19 trace elements in seal liver, kidney, muscle, and blubber, including arsenic, cadmium, lead, mercury, and vanadium due to their potential toxicity.
View Article and Find Full Text PDFJ Zoo Wildl Med
December 2024
Alaska SeaLife Center, Seward, AK 99664.
Recent unusual mortality events involving skin pathology in bearded (), ringed (), and spotted seals () in Alaska highlight the potential sensitivity of ice-associated species to the complex effects of climate change. The regulation of thyroid hormones, cortisol, and vitamin A have been shown to play essential roles in skin health and seasonal molt in some pinnipeds. Unfortunately, the lack of available reference data for healthy Alaskan ice seals has prevented the adequate evaluation of these factors in cases associated with mortality events.
View Article and Find Full Text PDFFront Microbiol
December 2024
IFREMER, ODE-DYNECO-PELAGOS, Plouzané, France.
Introduction: Seals, protected wild marine mammals, are widely found in waters around the world. However, rising concerns about their increasing numbers in some areas have led to potential worries regarding microbiological contamination of coastal areas by their feces, which could impact bathing and shellfish-harvesting activities. To the best of our knowledge, no study has been conducted on the bacterial and RNA viral communities present in the feces of both grey and harbor seals, which are the two main seal species observed in mainland France and overseas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!