Uptake of Leishmania major by dendritic cells (DCs) results in activation and interleukin (IL)-12 release. Infected DCs efficiently stimulate CD4- and CD8- T cells and vaccinate against leishmaniasis. In contrast, complement receptor 3-dependent phagocytosis of L. major by macrophages (MPhi) leads exclusively to MHC class II-restricted antigen presentation to primed, but not naive, T cells, and no IL-12 production. Herein, we demonstrate that uptake of L. major by DCs required parasite-reactive immunoglobulin (Ig)G and involved FcgammaRI and FcgammaRIII. In vivo, DC infiltration of L. major-infected skin lesions coincided with the appearance of antibodies in sera. Skin of infected B cell-deficient mice and Fcgamma-/- mice contained fewer parasite-infected DCs in vivo. Infected B cell-deficient mice as well as Fcgamma-/- mice (all on the C57BL/6 background) showed similarly increased disease susceptibility as assessed by lesion volumes and parasite burdens. The B cell-deficient mice displayed impaired T cell priming and dramatically reduced IFN-gamma production, and these deficits were normalized by infection with IgG-opsonized parasites. These data demonstrate that DC and MPhi use different receptors to recognize and ingest L. major with different outcomes, and indicate that B cell-derived, parasite-reactive IgG and DC FcgammaRI and FcgammaRIII are essential for optimal development of protective immunity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118064 | PMC |
http://dx.doi.org/10.1084/jem.20052288 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!