Cystic fibrosis (CF) is caused by a defect in the CF transmembrane conductance regulator (CFTR) protein that functions as a chloride channel. Dysfunction of the CFTR protein results in salty sweat, pancreatic insufficiency, intestinal obstruction, male infertility, and severe pulmonary disease. Most of the morbidity and mortality of CF patients results from pulmonary complications. Differences in susceptibility to bacterial infection and variable degree of CF lung disease among CF patients remain unexplained. Many phenotypic expressions of the disease do not directly correlate with the type of mutation in the Cftr gene. Using a unique CF mouse model that mimics aspects of human CF lung disease, we analyzed the differential gene expression pattern between the normal lungs of wild-type mice (WT) and the affected lungs of CFTR knockout mice (KO). Using microarray analysis followed by quantitation of candidate gene mRNA and protein expression, we identified many interesting genes involved in the development of CF lung disease in mice. These findings point to distinct mechanisms of gene expression regulation between mice with CF and control mice.

Download full-text PDF

Source
http://dx.doi.org/10.1152/physiolgenomics.00206.2005DOI Listing

Publication Analysis

Top Keywords

lung disease
16
gene expression
12
cftr protein
8
mice
6
disease
6
lung
5
gene
5
distinct pattern
4
pattern lung
4
lung gene
4

Similar Publications

Cell therapy: A beacon of hope in the battle against pulmonary fibrosis.

FASEB J

January 2025

Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.

Pulmonary fibrosis (PF) is a chronic and progressive interstitial lung disease characterized by abnormal activation of myofibroblasts and pathological remodeling of the extracellular matrix, with a poor prognosis and limited treatment options. Lung transplantation is currently the only approach that can extend the life expectancy of patients; however, its applicability is severely restricted due to donor shortages and patient-specific limitations. Therefore, the search for novel therapeutic strategies is imperative.

View Article and Find Full Text PDF

Platelet membrane-modified exosomes targeting plaques to activate autophagy in vascular smooth muscle cells for atherosclerotic therapy.

Drug Deliv Transl Res

January 2025

Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.

Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.

View Article and Find Full Text PDF

Objectives: We previously did a randomized clinical trial of lobectomy by VATS or thoracotomy for early-stage lung cancer and found that patients who underwent VATS had less postoperative pain and better quality of life compared with thoracotomy. VATS has since been regarded the preferred surgical method for early-stage lung cancer. It is assumed that long-term survival is not influenced by surgical approach, but this assumption primarily rests on non-randomized comparative studies.

View Article and Find Full Text PDF

Association of Obesity and Skeletal Muscle with Postoperative Survival in Non-Small Cell Lung Cancer.

Radiology

January 2025

From the Department of Radiology (J.H.L.) and Department of Thoracic and Cardiovascular Surgery (J.L., Y.J.J., S.Y.P., J.H.C., Y.S.C., J.K., Y.M.S., H.K.K.), Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea; Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, 115 Irwon-ro, Gangnam-gu, Seoul 06355, Korea (D.K., J.L., S.Y.P., S.K., J.C.); Center for Clinical Epidemiology, Sungkyunkwan University, Samsung Medical Center, Seoul, Korea (D.K., J.C.); Patient-Centered Outcomes Research Institute, Samsung Medical Center, Seoul, Korea (J.L., Y.M.S., S.K., H.K.K., J.C.); and Department of Epidemiology and Medicine, Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Md (J.C.).

Background A comprehensive assessment of skeletal muscle health is crucial to understanding the association between improved clinical outcomes and obesity as defined by body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) in lung cancer, but limited studies have been conducted on this topic. Purpose To investigate the association between BMI-defined obesity and survival in patients with non-small cell lung cancer who underwent curative resection, with a specific focus on the status of skeletal muscle assessed at CT. Materials and Methods This retrospective study investigated Korean patients with non-small cell lung cancer who underwent curative resection between January 2008 and December 2019.

View Article and Find Full Text PDF

Emerging trends in managed care pharmacy: A mixed-method study.

J Manag Care Spec Pharm

January 2025

Academy of Managed Care Pharmacy Foundation, Alexandria, VA.

Background: Over the past 5 years, managed care pharmacy has been shaped by a global pandemic, advancements in generative artificial intelligence (AI), Medicare drug price negotiation policies, and significant therapeutic developments. Collective intelligence methods can be used to anticipate future developments in practice to help organizations plan and develop new strategies around those changes.

Objective: To identify emerging trends in managed care pharmacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!