Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Context: Congenital hypothyroidism (CH) is a common endocrine disorder with an incidence of 1:3000-4000 at birth. In 80-85% of cases, CH is caused by defects in thyroid organogenesis, resulting in absent, ectopically located, and/or severely reduced gland [thyroid dysgenesis (TD)]. Mutations in genes controlling thyroid development have demonstrated that in a few cases, TD is a Mendelian trait. However, accumulating evidence supports the view that the genetics of TD are complex, possibly with a polygenic/multifactorial basis. A higher prevalence of congenital heart disease has been documented in children with CH than in the general population. Such an association suggests a possible pathogenic role of genes involved in both heart and thyroid development. NKX2-5 encodes a homeodomain-containing transcription factor with a major role in heart development, and mutations affecting this gene have been reported in individuals with congenital heart disease.
Objective: In the present work we investigated the possible involvement of NKX2-5 mutations in TD.
Results: Our results indicate that Nkx2-5(-/-) embryos exhibit thyroid bud hypoplasia, providing evidence that NKX2-5 plays a role in thyroid organogenesis and that NKX2-5 mutations contribute to TD. NKX2-5 mutational screening in 241 patients with TD allowed the identification of three heterozygous missense changes (R25C, A119S, and R161P) in four patients with TD. Functional characterization of the three mutations demonstrated reduced DNA binding and/or transactivation properties, with a dominant-negative effect on wild-type NKX2-5.
Conclusion: Our results suggest a previously unknown role of NKX2-5 in the pathogenesis of TD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/jc.2005-1350 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!