Contracting skeletal muscle increases glucose uptake to sustain energy demand. This is achieved through a gain in GLUT4 at the membrane, but the traffic mechanisms and regulatory signals involved are unknown. Muscle contraction is elicited by membrane depolarization followed by a rise in cytosolic Ca2+ and actomyosin activation, drawing on ATP stores. It is unknown whether one or more of these events triggers the rise in surface GLUT4. Here, we investigate the effect of membrane depolarization on GLUT4 cycling using GLUT4myc-expressing L6 myotubes devoid of sarcomeres and thus unable to contract. K+-induced membrane depolarization elevated surface GLUT4myc, and this effect was additive to that of insulin, was not prevented by inhibiting phosphatidylinositol 3-kinase (PI3K) or actin polymerization, and did not involve Akt activation. Instead, depolarization elevated cytosolic Ca2+, and the surface GLUT4myc elevation was prevented by dantrolene (an inhibitor of Ca2+ release from sarcoplasmic reticulum) and by extracellular Ca2+ chelation. Ca2+-calmodulin-dependent protein kinase-II (CaMKII) was not phosphorylated after 10 min of K+ depolarization, and the CaMK inhibitor KN62 did not prevent the gain in surface GLUT4myc. Interestingly, although 5'-AMP-activated protein kinase (AMPK) was phosphorylated upon depolarization, lowering AMPKalpha via siRNA did not alter the surface GLUT4myc gain. Conversely, the latter response was abolished by the PKC inhibitors bisindolylmaleimide I and calphostin C. Unlike insulin, K+ depolarization caused only a small increase in GLUT4myc exocytosis and a major reduction in its endocytosis. We propose that K+ depolarization reduces GLUT4 internalization through signals and mechanisms distinct from those engaged by insulin. Such a pathway(s) is largely independent of PI3K, Akt, AMPK, and CaMKII but may involve PKC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.00573.2005 | DOI Listing |
Biosci Rep
April 2024
Laboratorio de Transporte Intracelular, Instituto de Histología y Embriología de Mendoza Dr. Mario H Burgos, Mendoza, Argentina.
Insulin and muscle contraction trigger GLUT4 translocation to the plasma membrane, which increases glucose uptake by muscle cells. Insulin resistance and Type 2 diabetes are the result of impaired GLUT4 translocation. Quantifying GLUT4 translocation is essential for comprehending the intricacies of both physiological and pathophysiological processes involved in glucose metabolism.
View Article and Find Full Text PDFCurr Protoc
June 2023
Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.
Elevated blood glucose following a meal is cleared by insulin-stimulated glucose entry into muscle and fat cells. The hormone increases the amount of the glucose transporter GLUT4 at the plasma membrane in these tissues at the expense of preformed intracellular pools. In addition, muscle contraction also increases glucose uptake via a gain in GLUT4 at the plasma membrane.
View Article and Find Full Text PDFFront Aging Neurosci
July 2021
Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.
Aim: Population based studies indicate a positive association between type 2 diabetes (T2D) and Parkinson's disease (PD) where there is an increased risk of developing PD in patients with T2D. PD is characterized by the abnormal accumulation of intraneuronal aggregated α-synuclein (α-syn) in Lewy bodies, which negatively impact neuronal viability. α-syn is also expressed in both pancreatic islets and skeletal muscle, key players in glucose regulation.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
December 2019
Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii.
Skeletal muscle handles ~80-90% of the insulin-induced glucose uptake. In skeletal muscle, insulin binding to its cell surface receptor triggers redistribution of intracellular glucose transporter GLUT4 protein to the cell surface, enabling facilitated glucose uptake. In adipocytes, the eight-protein exocyst complex is an indispensable constituent in insulin-induced glucose uptake, as it is responsible for the targeted trafficking and plasma membrane-delivery of GLUT4.
View Article and Find Full Text PDFExp Physiol
June 2019
Food for Health Ireland, University College Dublin, Dublin, Ireland.
New Findings: What is the research question? This study used a new experimental model, in which culture medium is conditioned with human serum ex vivo, to investigate nutrient-mediated regulation of GLUT4 translocation in skeletal muscle cells in vitro. What is the main finding and importance? Human serum stimulated GLUT4 translocation, an effect differentially modulated by whether the culture medium was conditioned with serum from fasted subjects or with serum collected after feeding of intact or hydrolysed whey protein. Conditioning cell culture medium with human serum ex vivo represents a new approach to elucidate the effects of ingesting specific nutrients on skeletal muscle cell metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!