Characterisation of laboratory-generated vancomycin intermediate resistant Staphylococcus aureus strains.

Int J Antimicrob Agents

Department of Microbiology, Ranbaxy Research Laboratories R&D II, Plot No. 20, Sector 18, Udyog Vihar Industrial Area, Gurgaon 122001, Haryana, India.

Published: March 2006

Vancomycin has been the drug of choice for 30 years for the treatment of methicillin-resistant Staphylococcus aureus (MRSA). Emergence of decreased vancomycin susceptibility in MRSA strains presents a significant clinical problem with few therapeutic options. This study was performed to generate and characterise S. aureus strains with reduced susceptibility to vancomycin. Eighteen S. aureus strains were subjected to serial passaging on vancomycin to generate vancomycin intermediate resistant S. aureus (VISA) strains. Minimum inhibitory concentration (MIC) determination was performed for the parent and the passaged cultures with 13 different antibiotics. The strains were tested by the following five methods: simplified population analysis; CDC method; modified vancomycin agar screen; population analysis profile (PAP); and modified population analysis (PAP-area under the curve (AUC) ratio). Phenotypic changes such as doubling time, synergy with beta-lactam antibiotics and effect on norA efflux pumps were also studied for these strains. The result indicated that 8 VISA mutants (vancomycin MICs, 8-16 microg/mL) were generated in vitro from the 18 S. aureus strains. The CDC and modified agar methods proved to be the most sensitive and specific methods for detection of VISA strains. The PAP for all the VISA strains ranged from 12 microg/mL to > 16 microg/mL, with a PAP-AUC ratio of > 1.3. All mutants showed increased doubling time compared with their parent isolate. Synergism of the vancomycin and beta-lactam combinations was observed for all methicillin-resistant mutants. Upon acquisition of vancomycin resistance, a few mutants showed decreased oxacillin resistance. Two VISA strains were chosen for molecular characterisation of the mecA gene and one mutant showed genotypic changes with deletion of mecA. Loss of norA efflux pumps leading to fluoroquinolone sensitivity was also observed in four mutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijantimicag.2005.10.008DOI Listing

Publication Analysis

Top Keywords

aureus strains
16
visa strains
16
population analysis
12
strains
11
vancomycin
10
vancomycin intermediate
8
intermediate resistant
8
staphylococcus aureus
8
doubling time
8
nora efflux
8

Similar Publications

is a Gram-positive bacterium that is responsible for severe nosocomial infections. The rise of multidrug-resistant strains, which can pose significant health threats, prompts the development of new treatment interventions, and much attention has been directed at the development of prophylactic and therapeutic vaccination strategies. Capsular polysaccharides (CPs) are key protective elements of the cell wall and have been proposed as promising candidate antigens.

View Article and Find Full Text PDF

Lactic acid bacteria (LAB), known for their health benefits, exhibit antimicrobial and antibiofilm properties. This study investigated the cell-free supernatant (CFS) of spp., particularly KR3, against the common foodborne pathogens , and spp.

View Article and Find Full Text PDF

A 2019 nationwide study in Japan revealed the predominant methicillin-resistant Staphylococcus aureus (MRSA) types in bloodstream infections (BSIs) to be sequence type (ST)8-carrying SCC type IV (ST8-MRSA-IV) and clonal complex 1-carrying SCC type IV (CC1-MRSA-IV). However, detailed patient characteristics and how these MRSA types evolve over time remain largely unknown. In this long-term single-center study, MRSA strains isolated from blood cultures at Nagasaki University Hospital from 2012 to 2019 were sequenced and analyzed.

View Article and Find Full Text PDF

Background: A wound must progress through serial steps of healing to achieve structural and functional stability. This process is hampered in chronic wounds and wounds with delayed healing. Wound cover through skin grafting or a flap, or spontaneous healing through epithelization, requires healthy granulation tissue.

View Article and Find Full Text PDF

The increasing threat of antimicrobial-resistant bacteria, particularly Staphylococcus aureus, which rapidly develops multidrug resistance and commonly colonizes wound surfaces, demands innovative strategies. Phage-encoded endolysins offer a dual-purpose approach as topical therapies for infectious skin wounds and synergistic agents to reduce high-dose antibiotic dependence. This study explores recombinant CHAPk (rCHAPk), efficiently synthesized within 3 h, displaying broad-spectrum antibacterial activity against 11 Gram-positive strains, including resistant variants, with rapid bactericidal kinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!