Intragastric band migration is a potential complication of adjustable gastric banding. A 39-year-old morbidly obese female underwent laparoscopic adjustable gastric banding. After uneventful postoperative follow-up of 4 years, she had slow, steady failure of the restrictive effect, associated with regain of weight. Intragastric band migration was confirmed on GI series, and the patient was admitted to the hospital for revision. The patient presented no symptoms of acute abdomen. Intraoperatively, a huge intra-abdominal abscess was discovered in the epigastric area. The stomach with the band and tubing were involved in the inflammatory process. Labtobacillus acidofilus was found to be the causative organism. Removal of the gastric band with simultaneous resectional gastric bypass was performed. The recovery proceeded with no complications. Intragastric band migration can cause intra-abdominal abscess; thus, we believe that every case of band migration should be treated without delay to avoid further complications.

Download full-text PDF

Source
http://dx.doi.org/10.1381/096089206775222041DOI Listing

Publication Analysis

Top Keywords

band migration
16
intra-abdominal abscess
12
adjustable gastric
12
intragastric band
12
gastric band
8
gastric banding
8
band
7
migration
5
gastric
5
abscess course
4

Similar Publications

Nonlinear memristive computational spectrometer.

Light Sci Appl

January 2025

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China.

In the domain of spectroscopy, miniaturization efforts often face significant challenges, particularly in achieving high spectral resolution and precise construction. Here, we introduce a computational spectrometer powered by a nonlinear photonic memristor with a WSe homojunction. This approach overcomes traditional limitations, such as constrained Fermi level tunability, persistent dark current, and limited photoresponse dimensionality through dynamic energy band modulation driven by palladium (Pd) ion migration.

View Article and Find Full Text PDF

Unraveling the conversion mechanism toward spinel sulfides as cathode materials for Mg-ion batteries.

Phys Chem Chem Phys

January 2025

National Engineering Research Centre for Mg Alloys, Chongqing University, Chongqing 400044, PR China.

Rechargeable Mg batteries are promising candidates for achieving considerable high-energy-density. Enhancing the energy density can be achieved by integrating metallic Mg anodes with conversion-type cathode materials, which are characterized by multi-electron transfer process and elevated specific capacities in contrast to intercalation-type materials. Despite these advantages, the conversion-type cathodes still have some challenges of substantial volume expansion, sluggish diffusion kinetics and intricate mesophase evolution during repeated electrochemical reactions.

View Article and Find Full Text PDF

Mechanism, Performance, and Application of g-CN-Coupled TiO as an S-Scheme Heterojunction Photocatalyst for the Abatement of Gaseous Benzene.

ACS Appl Mater Interfaces

January 2025

Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea.

In this research, S-scheme heterojunction photocatalysts are prepared through the hybridization of nitrogen-rich g-CN with TiO (coded as TCN-(): as the weight ratio of TiO:g-CN). The photocatalytic potential of TCN-() is evaluated against benzene (1-5 ppm) across varying humidity levels using a dynamic flow packed-bed photocatalytic reactor. Among the prepared composites, TCN-(10) exhibits the highest synergy between g-CN and TiO at "" ratio of 10%, showing superior best benzene degradation performance (e.

View Article and Find Full Text PDF

Anion vacancy engineered Cu/ZnInS-V/TiO-V S-scheme heterojunction for enhancing photocatalytic overall water splitting.

J Colloid Interface Sci

January 2025

National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091 China; Southwest United Graduate School, Kunming 650091 China. Electronic address:

Heterojunction materials for photocatalytic overall water splitting (POWS) become popular in recent times. However, even in the superior S-scheme heterojunction, the two semiconductor materials still do not have an efficient activity to separate and migrate photogenerated carriers. To further improve the charge separation and enhance the activity of POWS, a novel S-scheme heterojunction photocatalyst, Cu/ZnInS-V/TiO-V, was synthesized using solvothermal and calcination methods.

View Article and Find Full Text PDF

The design and preparation of advanced hybrid nanofibers with controllable microstructures will be interesting because of their potential high-efficiency applications in the environmental and energy domains. In this paper, a simple and efficient strategy was developed for preparing hybrid nanofibers of zinc oxide-molybdenum disulfide (ZnO-MoS) grown on polyimide (PI) nanofibers by combining electrospinning, a high-pressure hydrothermal process, and in situ growth. Unlike simple composite nanoparticles, the structure is shown in PI-ZnO to be like the skeleton of a tree for the growth of MoS "leaves" as macro-materials with controlled microstructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!