The biosynthesis of most neuropeptides and peptide hormones requires a carboxypeptidase such as carboxypeptidase E, which is inactive in Cpe(fat/fat) mice due to a naturally occurring point mutation. To assess the role of carboxypeptidase E in the processing of peptides in the prefrontal cortex, we used a quantitative peptidomics approach to examine the relative levels of peptides in Cpe(fat/fat) versus wild-type mice. Peptides representing internal fragments of prohormones and other secretory pathway proteins were decreased two- to 10-fold in the Cpe(fat/fat) mouse prefrontal cortex compared with wild-type tissue. Degradation fragments of cytosolic proteins showed no major differences between Cpe(fat/fat) and wild-type mice. Based on this observation, a search strategy for neuropeptides was performed by screening for peptides that decreased in the Cpe(fat/fat) mouse. Altogether, 32 peptides were identified, of which seven have not been previously reported. The novel peptides include fragments of VGF, procholecystokinin and prohormone convertase 2. Interestingly, several of the peptides do not fit with the consensus sites for prohormone convertase 1 and 2, raising the possibility that another endopeptidase is involved with their biosynthesis. Taken together, these findings support the proposal that carboxypeptidase E is the major, but not the only, peptide-processing carboxypeptidase and also demonstrate the feasibility of searching for novel peptides based on their decrease in Cpe(fat/fat) mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2005.03614.x | DOI Listing |
J Integr Neurosci
January 2025
Sports, Exercise and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, 100084 Beijing, China.
Background: Sports fatigue in soccer athletes has been shown to decrease neural activity, impairing cognitive function and negatively affecting motor performance. Transcranial direct current stimulation (tDCS) can alter cortical excitability, augment synaptic plasticity, and enhance cognitive function. However, its potential to ameliorate cognitive impairment during sports fatigue remains largely unexplored.
View Article and Find Full Text PDFJ Clin Med
January 2025
Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B Block 6, 71-065 Szczecin, Poland.
: Multiple sclerosis (MS) is the most prevalent incurable nontraumatic neurological disability in young individuals. It causes numerous symptoms, including tingling, fatigue, muscle spasms, cognitive deficits, and neuropsychiatric disorders. This disease significantly worsens quality of life (QoL), and this dimension of general functioning provides valuable information about the effectiveness of treatment and well-being.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Old Aberdeen AB24 3UE, UK.
Background/objectives: A prominent endophenotype in Autism Spectrum Disorder (ASD) is the synaptic plasticity dysfunction, yet the molecular mechanism remains elusive. As a prototype, we investigate the postsynaptic signal transduction network in glutamatergic neurons and integrate single-cell nucleus transcriptomics data from the Prefrontal Cortex (PFC) to unveil the malfunction of translation control.
Methods: We devise an innovative and highly dependable pipeline to transform our acquired signal transduction network into an mRNA Signaling-Regulatory Network (mSiReN) and analyze it at the RNA level.
Biomedicines
December 2024
Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary.
Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.
View Article and Find Full Text PDFJ Physiol
January 2025
Functional Flow Solutions LLC, Albuquerque, New Mexico, USA.
Cognitive and physical stress have significant effects on brain health, particularly through their influence on the central executive network (CEN). The CEN, which includes regions such as the dorsolateral prefrontal cortex, anterior cingulate cortex and inferior parietal lobe, is central to managing the demands of cognitively challenging motor tasks. Acute stress can temporarily reduce connectivity within the CEN, leading to impaired cognitive function and emotional states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!