Kinetics of the redox reactions in the reaction center (P700) of photosystem I (PSI) of the cyanobacterium Synechocystis sp. PCC 6803 have been studied by EPR spectroscopy. The redox kinetics were recorded based on accumulation of the EPRI signal when the final signal was the sum of individual signals produced in response to illumination of the cells. After prolonged (more than 3 sec) dark intervals between illuminations, the kinetic curve of the EPR signal from P700+ was multiphasic. After a sharp increase in the signal amplitude at the beginning of illumination (phase I), the amplitude rapidly (for 0.1-0.2 sec) decreased (phase II). Then the signal amplitude gradually increased (phase III) until the steady rate of electron transfer was established. With short-term (1 sec) dark intervals between the flashes and also in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), the kinetics of the light-induced increase in the EPR signal from P700+ were monophasic. Inhibition with iodoacetamide of electron transport on the acceptor side of PSI under anaerobic conditions or an increase in the amount of respiration substrates on addition of glucose into a suspension of DCMU-treated wild-type cells increased the level of P700 reduction in phase III. The findings suggest that the kinetic curve of the EPR signal from P700+ is determined by both the electron entrance onto P700+ on the donor side of PSI and activity of electron acceptors of PSI.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10541-005-0274-1DOI Listing

Publication Analysis

Top Keywords

epr signal
12
signal p700+
12
electron transport
8
cyanobacterium synechocystis
8
synechocystis pcc
8
pcc 6803
8
dark intervals
8
kinetic curve
8
curve epr
8
signal amplitude
8

Similar Publications

Glutathione Involvement in Potato Response to French Marigold Volatile Organic Compounds.

Antioxidants (Basel)

December 2024

Department for Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia.

To elucidate the involvement of glutathione in the mitigation of induced oxidative changes and the sequestration of perceived volatiles in cells, we exposed potato plants to French marigold essential oil. The formation of short-lived radicals, the determination of scavenging activity towards ascorbyl and DPPH radicals, and the assessment of the potato plants' overall intra/extracellular reduction status were performed using electron paramagnetic resonance spectroscopy (EPR). The results showed the presence of hydroxyl radicals in potatoes, with significantly reduced accumulation in exposed plants compared to the control group after 8 h.

View Article and Find Full Text PDF
Article Synopsis
  • MitoNEET, an iron-sulphur protein in the mitochondrial outer membrane, is linked to the drug pioglitazone but its exact molecular function remains unclear.
  • Researchers identified a specific site for nitric oxide (NO) access to the mitoNEET's [2Fe-2S] cluster and found that both oxygen and pioglitazone can block this access.
  • This discovery suggests a role for mitoNEET in mitochondrial signal transduction related to hypoxia, revealing new insights into how [Fe-S] clusters may function in signaling processes in eukaryotic cells.
View Article and Find Full Text PDF

The improper handling and uncontrolled discharge of toxic organic dyes result in significant adverse effects on both human health and the environment. This study investigates the fabrication of SnO₂, yttrium and cobalt dual-doped SnO₂ (YCSn), chitosan-capped SnO₂ (CS*Sn), and chitosan-capped yttrium and cobalt dual-doped SnO₂ (CS*YCSn) nanoparticles using a one-step coprecipitation method for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible (UV-Vis) spectrophotometry confirm the successful synthesis of biodegradable CS*YCSn nanoparticles.

View Article and Find Full Text PDF

Intercomparison exercise on electron paramagnetic resonance dosimetry in sorbitol.

Appl Radiat Isot

December 2024

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France.

This paper presents the results of the first intercomparison exercise on Electron Paramagnetic Resonance (EPR) dosimetry using sorbitol, where the performance parameters of sorbitol as dosimetric material were evaluated by three independent participants. Each participant was asked to determine a calibration curve using a set of sorbitol powder samples irradiated to four different doses (1.00, 2.

View Article and Find Full Text PDF

Hypershifted spin spectroscopy with dynamic nuclear polarization at 1.4 K.

Sci Adv

December 2024

Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.

Dynamic nuclear polarization (DNP) enhances nuclear magnetic resonance (NMR) sensitivity by transferring polarization from unpaired electrons to nuclei, but nearby nuclear spins are difficult to detect or "hidden" due to strong electron-nuclear couplings that hypershift their NMR resonances. Here, we detect these hypershifted spins in a frozen glycerol-water mixture doped with TEMPOL at ~1.4 K using spin diffusion enhanced saturation transfer (SPIDEST), which indirectly reveals their spectrum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!