We report here infrared spectra of protonated and lithiated valine with varying degrees of hydration in the gas phase and interpret them with the help of DFT calculations at the B3LYP/6-31++G** level. In both the protonated and lithiated species our results clearly indicate that the solvation process is driven first by solvation of the charge site and subsequently by formation of a second solvation shell. The infrared spectra of Val x Li+ (H2O)4 and Val x H+ (H2O)4 are strikingly similar in the region of the spectrum corresponding to hydrogen-bonded stretches of donor water molecules, suggesting that in both cases similar extended water structures are formed once the charge site is solvated. In the case of the lithiated species, our spectra are consistent with a conformation change of the amino acid backbone from syn to anti accompanied by a change in the lithium binding from a NO coordination to OO coordination configuration upon addition of the third water molecule. This change in the mode of metal ion binding was also observed previously by Williams and Lemoff [J. Am. Soc. Mass Spectrom. 2004, 15, 1014-1024] using blackbody infrared radiative dissociation (BIRD). In contrast to the zwitterion formation inferred from results of the BIRD experiments upon addition of a third water molecule, our spectra, which are a more direct probe of structure, show no evidence for zwitterion formation with the addition of up to four water molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja056079v | DOI Listing |
ACS Polym Au
December 2024
Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstraße 1, 91058 Erlangen, Germany.
Polyethersulfone (PSU) as a commercially available polymer offers many different opportunities for functionalization for diverse fields of application, for example, electrophilic substitutions like sulfonation and bromination or nucleophilic reactions such as lithiation. This study presents three different polysulfone derivatives, first functionalized by a lithiation reaction, followed by a reaction with carbonyl compounds containing pentafluorophenyl groups. In the last step, the pentafluorophenyl moieties of the modified PSU were sulfonated by thiolation and subsequent oxidation to sulfonic acid groups.
View Article and Find Full Text PDFJ Am Chem Soc
October 2024
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States.
J Am Soc Mass Spectrom
August 2024
Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 77146 Olomouc, Czech Republic.
Analysis of new psychoactive substances (NPS), which is essential for toxicological and forensic reasons, can be made complicated by the presence of isomers. Ion mobility has been used as a standalone technique or coupled to mass spectrometry to detect and identify NPS. However, isomer separation has so far chiefly relied on chromatography.
View Article and Find Full Text PDFFront Chem
June 2024
Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, United States.
Interfacial charge transfer reactions involving cations and electrons are fundamental to (photo/electro) catalysis, energy storage, and beyond. Lithium-coupled electron transfer (LCET) at the electrode-electrolyte interfaces of lithium-ion batteries (LIBs) is a preeminent example to highlight the importance of charge transfer in modern-day society. The thermodynamics of LCET reactions define the minimal energy for charge/discharge of LIBs, and yet, these parameters are rarely available in the literature.
View Article and Find Full Text PDFChem Asian J
August 2024
Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan.
In this study, compounds with phenylethynyl (PE) groups introduced at all of the possible positions of the methylene-bridged structure of the 1,1'-bi-2-naphthol backbone (3-PE to 8-PE) were synthesized. Compounds with four or six phenylethynyl groups (3,6-PE, 4,6-PE, 5,6-PE, 6,7-PE, and 3,4,6-PE) were also synthesized. The key reaction for the synthesis of these compounds was the Sonogashira reaction using halogen scaffolds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!