Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intraclass correlation coefficients are designed to assess consistency or conformity between two or more quantitative measurements. When multistage cluster sampling is implemented, no methods are readily available to estimate intraclass correlations of binomial-distributed outcomes within a cluster. Because statistical distribution of the intraclass correlation coefficients could be complicated or unspecified, we propose using a bootstrap method to estimate the standard error and confidence interval within the framework of a multilevel generalized linear model. We compared the results derived from a parametric bootstrap method with those from a non-parametric bootstrap method and found that the non-parametric method is more robust. For non-parametric bootstrap sampling, we showed that the effectiveness of sampling on the highest level is greater than that on lower levels; to illustrate the effectiveness, we analyse survey data in China and do simulation studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/sim.2457 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!