The putative telomerase reverse transcriptase component of Leishmania amazonensis: gene cloning and characterization.

Parasitol Res

Departamento de Patologia Clínica, Núcleo de Medicina e Cirurgia Experimental, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), CP 6109, Campinas, SP, CEP 13083-970, Brazil.

Published: April 2006

The Leishmania amazonensis telomerase gene was cloned by a polymerase chain reaction-based strategy using primers designed from a Leishmania major sequence that shared similarities with conserved telomerase motifs. The genes from three other species were cloned for comparative purposes. A ClustalW multiple-sequence alignment demonstrated that the Leishmania telomerases show greater homology with each other than with the proteins of other kinetoplastids and eukaryotes. Characterization experiments indicated that the putative Leishmania telomerase gene was probably in single copy and located in the largest chromosomes. A single messenger ribonucleic acid transcript was found in promastigotes. Phylogenetic analysis suggested that Leishmania telomerase might represent a liaison between the oldest and the newest branches of telomerases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00436-005-0036-4DOI Listing

Publication Analysis

Top Keywords

leishmania amazonensis
8
telomerase gene
8
leishmania telomerase
8
leishmania
6
putative telomerase
4
telomerase reverse
4
reverse transcriptase
4
transcriptase component
4
component leishmania
4
amazonensis gene
4

Similar Publications

Leishmaniasis is a neglected tropical disease caused by a protozoan of the genus Leishmania, which has visceral and cutaneous forms. The symptoms of leishmaniasis include high fever and weakness, and the cutaneous infection also causes lesions under the skin. The drugs used to treat leishmaniasis have become less effective due to the resistance mechanisms of the protozoa.

View Article and Find Full Text PDF

The Potential Role of Sanguinarine as an Inhibitor of Leishmania PP2C in the Induction of Apoptosis.

Acta Parasitol

January 2025

División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Ciudad de México, C.P. 14080, México.

Leishmania spp. cause a wide range of human diseases, localized skin lesions, mucocutaneous and visceral infections. In the present study, the aim was to investigate the potential role of sanguinarine as a specific inhibitor of Leishmania PP2C that can induce apoptosis in the parasite.

View Article and Find Full Text PDF

One of the most important steps in preclinical drug discovery is to demonstrate the in vivo efficacy of potential leishmanicidal compounds and good characteristics at the level of parasite killing prior to initiating human clinical trials. This paper describes the use of dehydrothyrsiferol (DT), isolated from the red alga , in a pharmaceutical form supported on Sepigel, and the in vivo efficacy against a mouse model of cutaneous leishmaniasis. Studying the ultrastructural effect of DT was also carried out to verify the suspected damage at the cellular level and determine the severity of damages produced in the homeostasis of promastigotes.

View Article and Find Full Text PDF

Pretreatment with serine protease inhibitors impairs Leishmania amazonensis survival on macrophages.

Parasit Vectors

January 2025

Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil.

Background: Leishmaniases are neglected tropical diseases with great clinical and epidemiological importance. The current chemotherapy available for the treatment of leishmaniasis presents several problems, such as adverse effects, toxicity, long treatment time, and parasite resistance. The discovery of new therapeutic alternatives is extremely essential, and the discovery of cellular targets is a tool that helps in the development of new drugs.

View Article and Find Full Text PDF

Parasitic diseases such as trypanosomiasis and leishmaniasis pose significant health challenges in Africa. The Senegalese Pharmacopoeia, known for its many medicinal plants with anti-infectious properties, can be a source of antiparasitic natural products. This study aimed to evaluate the in vitro antiparasitic activities of 33 methanolic extracts from 24 ethnopharmacologically selected plants against Trypanosoma brucei brucei and Leishmania mexicana mexicana, as well as their cytotoxic activities on WI-38 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!