Chromosomes interact through their kinetochores with microtubule plus ends and they are segregated to the spindle poles as the kinetochore microtubules shorten during anaphase A of mitosis. The molecular natures and identities of coupling proteins that allow microtubule depolymerization to pull chromosomes to poles during anaphase have long remained elusive. In budding yeast, the ten-protein Dam1 complex is a critical microtubule-binding component of the kinetochore that oligomerizes into a 50-nm ring around a microtubule in vitro. Here we show, with the use of a real-time, two-colour fluorescence microscopy assay, that the ring complex moves processively for several micrometres at the ends of depolymerizing microtubules without detaching from the lattice. Electron microscopic analysis of 'end-on views' revealed a 16-fold symmetry of the kinetochore rings. This out-of-register arrangement with respect to the 13-fold microtubule symmetry is consistent with a sliding mechanism based on an electrostatically coupled ring-microtubule interface. The Dam1 ring complex is a molecular device that can translate the force generated by microtubule depolymerization into movement along the lattice to facilitate chromosome segregation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature04409 | DOI Listing |
J Org Chem
January 2025
Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany.
Spin labels based on Gd complexes are important tools for the elucidation of the structure, dynamics and interaction of biomolecules by electron paramagnetic resonance (EPR) spectroscopy. Their EPR spectroscopic properties line width and relaxation times influence their performance in a particular application. To be able to apply a complex well-suited for a specific application, a set of Gd complexes with different EPR spectroscopic properties ready-made for spin labeling will be highly useful.
View Article and Find Full Text PDFSci Adv
January 2025
Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.
Understanding how land use affects temporal stability is crucial to preserve biodiversity and ecosystem functions. Yet, the mechanistic links between land-use intensity and stability-driving mechanisms remain unclear, with functional traits likely playing a key role. Using 13 years of data from 300 sites in Germany, we tested whether and how trait-based community features mediate the effect of land-use intensity on acknowledged stability drivers (compensatory dynamics, portfolio effect, and dominant species variability), within and across plant and arthropod communities.
View Article and Find Full Text PDFMed Phys
January 2025
Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
Background: Total-body (TB) Positron Emission Tomography (PET) is one of the most promising medical diagnostics modalities, opening new perspectives for personalized medicine, low-dose imaging, multi-organ dynamic imaging or kinetic modeling. The high sensitivity provided by total-body technology can be advantageous for novel tomography methods like positronium imaging, demanding the registration of triple coincidences. Currently, state-of-the-art PET scanners use inorganic scintillators.
View Article and Find Full Text PDFEur J Trauma Emerg Surg
January 2025
Klinik für Orthopädie und Unfallchirurgie, UK-SH, Campus Kiel, Germany.
Background: Pelvic ring and acetabular fractures are among the most complicated and severe injury patterns in orthopaedic trauma surgery. Inpatient treatment is not only costly but also very time-consuming. The aim of this study is to identify predictors leading to a prolonged length of hospital stay.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Western University, 1151 Richmond St, London, ON, N8K 3G6, Canada.
Studies that independently investigate [M]-C transmetalation reactions using two different metals are uncommon and yet understanding this reactivity is important to unlocking new synthetic approaches and product classes. Here, we show that the strained [Fe]-C complex, [(η-CMe-CH)Fe(diphosphine)] undergoes transmetalation with rhodium(I) and iridium(I) diolefin salts, leading to rapid Fe-C(sp) bond cleavage and M-C(sp) (M = Rh or Ir) bond generation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!