Vertebrate and invertebrate dendrites are information-processing compartments that can be found on both central and peripheral neurons. Elucidating the molecular underpinnings of information processing in the nervous system ultimately requires an understanding of the genetic pathways that regulate dendrite formation and maintenance. Despite the importance of dendrite development, few forward genetic approaches have been used to analyze the latest stages of dendrite development, including the formation of F-actin-rich dendritic filopodia or dendritic spines. We developed a forward genetic screen utilizing transgenic Drosophila second instar larvae expressing an actin, green fluorescent protein (GFP) fusion protein (actin::GFP) in subsets of sensory neurons. Utilizing this fluorescent transgenic reporter, we conducted a forward genetic screen of >4000 mutagenized chromosomes bearing lethal mutations that affected multiple aspects of larval dendrite development. We isolated 13 mutations on the X and second chromosomes composing 11 complementation groups affecting dendrite outgrowth/branching, dendritic filopodia formation, or actin::GFP localization within dendrites in vivo. In a fortuitous observation, we observed that the structure of dendritic arborization (da) neuron dendritic filopodia changes in response to a changing environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456372PMC
http://dx.doi.org/10.1534/genetics.105.051276DOI Listing

Publication Analysis

Top Keywords

forward genetic
16
dendrite development
16
genetic screen
12
dendritic filopodia
12
dendrite
6
genetic
5
dendritic
5
novel forward
4
screen identifying
4
identifying mutations
4

Similar Publications

A significant advancement in synthetic biology is the development of synthetic gene circuits with predictive Boolean logic. However, there is no universally accepted or applied statistical test to analyze the performance of these circuits. Many basic statistical tests fail to capture the predicted logic (OR, AND, etc.

View Article and Find Full Text PDF

In the context of survival analysis, data-driven neural network-based methods have been developed to model complex covariate effects. While these methods may provide better predictive performance than regression-based approaches, not all can model time-varying interactions and complex baseline hazards. To address this, we propose Case-Base Neural Networks (CBNNs) as a new approach that combines the case-base sampling framework with flexible neural network architectures.

View Article and Find Full Text PDF

Background: Streptomyces roseochromogenes NRRL 3504 produces clorobiocin, an aminocoumarin antibiotic that inhibits DNA replication. No other natural products have been isolated from this bacterium so far, despite the presence of a rich repertoire of specialized metabolite biosynthesis gene clusters (smBGCs) within its genome. Heterologous expression of smBGCs in suitable chassis speeds up the discovery of the natural products hidden behind these sets of genes.

View Article and Find Full Text PDF

MicroRNA (miR)-126 is frequently downregulated in malignancies, including breast cancer (BC). Despite its tumor-suppressive role, the mechanisms underlying miR-126 deregulation in BC remain elusive. Through silencing experiments, we identified Early B Cell Factor 1 (EBF1), ETS Proto-Oncogene 2 (ETS2), and Krüppel-Like Factor 2 (KLF2) as pivotal regulators of miR-126 expression.

View Article and Find Full Text PDF

The SOS Response Activation and the Risk of Antibiotic Resistance Enhancement in spp. Strains Exposed to Subinhibitory Concentrations of Ciprofloxacin.

Int J Mol Sci

December 2024

Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.

The widespread and inappropriate use of antibiotics, for therapeutic and prophylactic purposes, has contributed to a global crisis of rapidly increasing antimicrobial resistance of microorganisms. This resistance is often associated with elevated mutagenesis induced by the presence of antibiotics. Additionally, subinhibitory concentrations of antibiotics can trigger stress responses in bacteria, further exacerbating this problem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!