The aim of the study was to investigate the effects of alpha-melanocyte-stimulating hormone (alpha-MSH), a tridecapeptide derived from proopiomelanocortin (POMC), on the neurodegeneration following global cerebral ischemia and reperfusion in the rat. The biological activities of alpha-MSH include inhibition of inflammatory responses and anti-pyretic effects. Male Sprague-Dawley rats were subjected to four-vessel occlusion (4-VO) global cerebral ischemia followed by reperfusion, and treated with alpha-MSH (intraperitoneally, i.p.) at 30 min, and 24, 48, 72 and 96 h post-ischemia. Stereological quantification of the pyramidal cells in the CA1 area of the hippocampus showed that the number of viable neurons in ischemic rats was 96,945+/-18,610 (means+/-SD) as compared to 183,156+/-49,935 in sham-operated rats (P<0.05). The number of viable neurons after treatment of ischemic rats with alpha-MSH was 162,829+/-34,757, i.e. significantly different from the number of viable neurons in ischemic rats injected with saline (P<0.01). Astrocyte proliferation due to the ischemic insult was markedly reduced by the treatment with alpha-MSH, and the loss in body weight was reduced by alpha-MSH. In conclusion, post-ischemic administration of alpha-MSH was found to provide neuroprotection in the CA1 pyramidal cell layer in the hippocampus, concomitant with a reduction in glial activation, indicating that alpha-MSH or mimetics thereof may have a potential in the treatment of stroke or other neurodegenerative diseases. Further studies will be required to define the post-ischemic time window for administration of alpha-MSH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.npep.2005.10.006 | DOI Listing |
Brain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFEpilepsia
January 2025
Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
We propose and prioritize important outcome domains that should be considered for future research investigating long-term outcomes (LTO) after new onset refractory status epilepticus (NORSE). The study was led by the international NORSE Institute LTO Working Group. First, literature describing the LTO of NORSE survivors was identified using a PubMed search and summarized to identify knowledge gaps.
View Article and Find Full Text PDFMult Scler
January 2025
Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
Background: Spinal cord (SC) atrophy is a key imaging biomarker of progressive multiple sclerosis (MS). Progressive MS is more common in men and postmenopausal women.
Objective: Investigate the impact of sex and menopause on SC measurements in persons with MS (pwMS).
Zhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Neurology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, China.
Objectives: To investigate the clinical characteristics and prognosis of infants and young children with basal ganglia infarction after minor head trauma (BGIMHT).
Methods: A retrospective analysis was conducted on the clinical data and follow-up results of children aged 28 days to 3 years with BGIMHT who were hospitalized at Children's Hospital of Soochow University from January 2011 to January 2022.
Results: A total of 45 cases of BGIMHT were included, with the most common symptom being limb movement disorders (96%, 43/45), followed by facioplegia (56%, 25/45).
Hum Mol Genet
January 2025
Department of Human Genetics, McGill University, 3666 McTavish Street, Montreal, QC H3A 1Y2, Canada.
Many genes in the human genome encode proteins that are dosage sensitive, meaning they require protein levels within a narrow range to properly execute function. To investigate if clinically relevant variation in protein levels impacts the same downstream pathways in human disease, we generated cell models of two SETBP1 syndromes: Schinzel-Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disease (SHD), where SGS is caused by too much protein, and SHD is caused by not enough SETBP1. Using patient and sex-matched healthy first-degree relatives from both SGS and SHD SETBP1 cases, we assessed how SETBP1 protein dosage affects downstream pathways in human forebrain progenitor cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!