Natural variation of ascospore and conidial germination by Fusarium verticillioides and other Fusarium species.

Mycol Res

USDA, Agriculture Research Service, Toxicology & Mycotoxin Research Unit, Richard B. Russell Research Center, 950 College Station Road, Athens, GA 30604, USA.

Published: February 2006

Fusarium verticillioides and other Fusarium species were examined for their spore germination phenotypes. In general, germinating spores of F. verticillioides formed germ tubes that immediately penetrated into agar. Such invasive germination was the predominant growth phenotype among 22 examined field isolates of F. verticillioides from a broad range hosts and locations. However, two of the field isolates were unique in that they formed conidial germ tubes and hyphae that grew along the surface of agar before penetration eventually occurred. Conidia of 22 other Fusarium species were assessed for their germination phenotypes, and only some strains of F. annulatum, F. fujikuroi, F. globosum, F. nygamai, and F. pseudoanthophilum had the surface germination phenotype (21% of the strains assessed). Sexual crosses and segregation analyses involving one of the F. verticillioides surface germination strains, NRRL 25059, indicated a single locus, designated SIG1 (surface vs. invasive germination), controlled the germ tube growth phenotypes exhibited by both conidia and ascospores. Perfect correlation was observed between an ascospore germination phenotype and the germination phenotype of the conidia produced from the resulting ascospore-derived colony. Recombination data suggested SIG1 was linked ( approximately 7% recombination frequency) to FPH1, a recently described locus necessary for enteroblastic conidiogenesis. Corn seedling blight assays indicated surface germinating strains of F. verticillioides were less virulent than invasively germinating strains. Assays also indicated pathogenicity segregated independently of the FPH1 locus. Invasive germination is proposed as the dominant form of spore germination among Fusarium species. Furthermore, conidia were not necessary for corn seedling disease development, but invasive germination may have enhanced the virulence of conidiating strains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mycres.2005.09.004DOI Listing

Publication Analysis

Top Keywords

fusarium species
16
invasive germination
16
germination
12
germination phenotype
12
germination fusarium
8
fusarium verticillioides
8
verticillioides fusarium
8
spore germination
8
germination phenotypes
8
germ tubes
8

Similar Publications

A Novel cold-active chitin deacetylase from Shewanella psychrophila WP2 (SpsCDA) was overexpressed in Escherichia coli BL21 and employed for deacetylation of chitin to chitosan. The produced chitosan was characterized, and its antifungal activity was investigated against Fusarium oxysporum. The purified recombinant SpsCDA appeared as a single band on SDS-PAGE at approximately 60 kDa, and its specific activity was 92 U/mg.

View Article and Find Full Text PDF

Antimicrobial polyketides from the endophytic fungus Fusarium asiaticum QA-6 derived from medicinal plant Artemisia argyi.

Phytochemistry

January 2025

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Nanhai Road 7, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, PR China. Electronic address:

Seven previously undescribed polyketide derivatives, fusariumtides A-G (1-7), together with three known analogues (8-10), were isolated from the culture extract of Fusarium asiaticum QA-6, an endophytic fungus obtained from the fresh stem tissue of the medicinal plant Artemisia argyi H. Lev. & Vaniot.

View Article and Find Full Text PDF

Endophytes from medicinal plants are potential biocontrol agents against Fusarium oxysporum f. sp. cubense (Foc), which is the causative fungus of banana wilt disease.

View Article and Find Full Text PDF

Photodynamic antimicrobial therapy with Erythrosin B, Eosin Y, and Rose Bengal for the inhibition of fungal keratitis isolates: An in vitro study.

J Photochem Photobiol B

December 2024

Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America; Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America.

Introduction: Fungal keratitis is a leading cause of corneal blindness, with current antifungal treatments having limited efficacy. One promising treatment modality is Rose Bengal (RB) photodynamic antimicrobial therapy (PDAT) that has shown mixed success against fungal keratitis. Therefore, there is a need to explore the antimicrobial efficacy of other green-light activated photosensitizers that have deep penetration in the cornea to combat the deep fungal infections, such as Erythrosin B (EB) and Eosin Y (EY).

View Article and Find Full Text PDF

Fusarium sambucinum causes dry rot disease and postharvest storage losses in potatoes. Understanding the defense mechanisms of potato plants may lead to the development of rational disease control approaches. In the present study, "Kexin one" potato variety was infected with F.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!