CD8 T lymphocytes are important effectors in protective immunity against Mycobacterium tuberculosis. We recently characterized the detour pathway of CD8 T cell activation in tuberculosis mediated by apoptotic vesicles from infected cells that transport mycobacterial antigens to dendritic cells (DCs). Here we demonstrate that apoptotic vesicles from mycobacteria-infected macrophages stimulate CD8 T cells in vivo. Homing of DCs to draining lymph nodes was critically required for effective crosspriming. Subsequent fate of vesicle-associated antigens in recipient DCs was characterized by endosomal mechanisms predominating over proteasomal processing. In addition, vesicle processing depended on the presence of saposins to disintegrate apoptotic membranes. Apoptotic vesicles displayed potent adjuvant activity by stimulating through Toll-like receptors (TLR). Ultimately, vaccination with vesicles from infected cells induced protection against M. tuberculosis infection. Taken together, we propose the detour pathway to represent a genuine immunological mechanism mediating crosspriming of CD8 T cells in vivo and protection against tuberculosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.immuni.2005.12.001 | DOI Listing |
Research (Wash D C)
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China.
Hyperglycemia and bacterial colonization in diabetic wounds aberrantly activate Nod-like receptor protein 3 (NLRP3) in macrophages, resulting in extensive inflammatory infiltration and impaired wound healing. Targeted suppression of the NLRP3 inflammasome shows promise in reducing macrophage inflammatory disruptions. However, challenges such as drug off-target effects and degradation via lysosomal capture remain during treatment.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
Milk is a multifaceted biofluid that is essential for infant nutrition and development, yet its cellular and bioactive components, particularly maternal milk cells, remain understudied. Early research on milk cells indicated that they cross the infant's intestinal barrier and accumulate within systemic organs. However, due to the absence of modern analytical techniques, these studies were limited in scope and mechanistic analysis.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland.
The study aims to evaluate and compare two advanced proteomic techniques, nanoLC-MALDI-MS/MS and nanoLC-TIMS-MS/MS, in characterizing extracellular vesicles (EVs) from the bronchoalveolar lavage fluid (BALF) of patients with asthma and idiopathic pulmonary fibrosis (IPF). Pulmonary diseases, driven by pollutants and infections, often necessitate detailed analysis of BALF to identify diagnostic biomarkers and therapeutic targets. EVs, which include exosomes, microvesicles, and apoptotic bodies, are isolated using filtration and ultracentrifugation, and their morphology, concentration, and size distribution are assessed through transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA).
View Article and Find Full Text PDFNanoscale Adv
January 2025
Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
Extracellular vesicles (EVs) are emerging as viable tools in cancer treatment due to their ability to carry a wide range of theranostic activities. This review summarizes different forms of EVs such as exosomes, microvesicles, apoptotic bodies, and oncosomes. It also sheds the light onto isolation methodologies, characterization techniques and therapeutic applications of all discussed EVs.
View Article and Find Full Text PDFOral Maxillofac Surg
January 2025
Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
Objective: A nanometer-sized vesicles originating from bone marrow mesenchymal stem cells (BMMSCs), called exosomes, have been extensively recognized. This study defines the impact of BMMSCs and their derived exosomes on proliferation, apoptosis and oxidative stress (OS) levels of CP-induced parotid salivary gland damage.
Methods: BMMSCs were isolated from the tibia of four white albino rats and further characterized by flowcytometric analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!