We describe and compare the main kinetic characteristics of rabbit kidney Na,K-ATPase incorporated inside-out in DPPC:DPPE-liposomes with the C(12)E(8) solubilized and purified form. In proteoliposomes, we observed that the ATP hydrolysis of the enzyme is favored and also its affinity for Na(+)-binding sites increases, keeping the negative cooperativity with two classes of hydrolysis sites: one of high affinity (K(0.5)=6 microM and 4 microM for reconstituted enzyme and purified form, respectively) and another of low affinity (K(0.5)=0.4 mM and 1.4 mM for reconstituted enzyme and purified form, respectively). Our data showed a biphasic curve for ATP hydrolysis, suggesting the presence of (alphabeta)(2) oligomer in reconstituted Na,K-ATPase similar to the solubilized enzyme. The Mg(2+) concentration dependence in the proteoliposomes stimulated the Na,K-ATPase activity up to 476 U/mg with a K(0.5) value of 0.4 mM. The Na(+) ions also presented a single saturation curve with V(M)=551 U/mg and K(0.5)=0.2 mM with cooperative effects. The activity was also stimulated by K(+) ions through a single curve of saturation sites (K(0.5)=2.8 mM), with cooperative effects and V(M)=641 U/mg. The lipid microenvironment close to the proteic structure and the K(+) internal to the liposome has a key role in enzyme regulation, affecting its kinetic parameters while it can also modulate the enzyme's affinity for substrate and ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpc.2005.11.003 | DOI Listing |
Sci Rep
December 2024
Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
A circadian clock is reconstituted in vitro by incubating three proteins, KaiA, KaiB, and KaiC from the non-nitrogen-fixing cyanobacterium Synechococcus elongatus PCC 7942 in the presence of ATP. Leptolyngbya boryana is a filamentous cyanobacterium that grows diazotrophically under microoxic conditions. Among the aforementioned proteins, KaiC is the main clock oscillator belonging to the RecA ATPase superfamily.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Chemistry, University of Georgia, Athens, GA 30602. Electronic address:
Pyrrolnitrin, a potent antifungal compound originally discovered in Pseudomonas strains, is biosynthesized through a secondary metabolic pathway involving four key enzymes. Central to this process is PrnB, a heme enzyme that catalyzes the complex transformation of 7-Cl-L-tryptophan. Despite its structural similarity to indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) and its classification within the histidine-ligated heme-dependent aromatic oxygenase (HDAO) superfamily, PrnB has remained relatively unexplored due to challenges in reconstituting its in vitro activity.
View Article and Find Full Text PDFGenes Immun
December 2024
Department of Hepatobiliary Surgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, China.
The hypoxic microenvironment is an essential feature of solid tumors. Autophagy has been controversial in its role in immune regulation. This project aims to elucidate the impact of autophagy in pancreatic cancer (PC) under specific conditions (hypoxia) on CD8 T cells and the regulatory mechanisms behind it.
View Article and Find Full Text PDFBioorg Chem
December 2024
Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York 13902, USA. Electronic address:
A modified enzyme fragment complementation assay has been designed and validated as a turn-on biosensor for nucleic acid detection in dilute aqueous solution. The assay is target sequence-agonistic and uses fragments of NanoBiT, the split luciferase reporter enzyme, that are esterified enzymatically at their C-termini to steramers, sterol-linked oligonucleotides. The Drosophila hedgehog autoprocessing domain, DHhC, serves as the self-cleaving enzyme for the NanoBiT-steramer bioconjugations.
View Article and Find Full Text PDFSci Adv
December 2024
Key Laboratory of Multiple Organ Failure (Ministry of Education), and Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
The covalently attached cofactor biotin plays pivotal roles in central metabolism. The top-priority ESKAPE-type pathogens, and , constitute a public health challenge of global concern. Despite the fact that the late step of biotin synthesis is a validated anti-ESKAPE drug target, the primary stage remains fragmentarily understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!