Effect of zinc on biochemical parameters and changes in related gene expression assessed by cDNA microarrays in pituitary of growing rats.

Nutrition

The Key Laboratory of Molecular Animal Nutrition, Ministry of Education and Institute of Feed Science, Zhejiang University, Hangzhou, China.

Published: February 2006

Objective: The present study simultaneously investigated the effects of different zinc (Zn) levels on the growth performance and relative biochemical parameters in growing rats and analyzed the molecular mechanism of zinc influencing food intake.

Methods: Three diets with different Zn levels--Zn adequate (ZA; 35.94 mg/kg, control), Zn deficient (ZD; 3.15 mg/kg), and Zn overdose (ZO; 347.50 mg/kg)--were fed to rats for 6 wk. Dietary Zn was supplemented with ZnSO4. The relation between zinc and food intake was studied by pituitary cDNA microarrays.

Results: Compared with ZA group, rats fed the ZD diet showed decreases in body weight (P < 0.01), food intake (P < 0.05), tissue zinc concentrations (P < 0.01), and specific activities of alkaline phosphatase (P < 0.01) and copper/Zn superoxide dismutase (P < 0.05), whereas the ZO diet had positive effects on body weight (P < 0.05), zinc concentrations (P < 0.01), and alkaline phosphatase activity (P < 0.05). The villi of the jejunum became shorter (P < 0.01), shriveled, and flattened. This change in morphology decreased absorption surface area, and there was a substantial decrease (P < 0.01) in villi number per unit area in ZD rats. Metallothionein concentration was increased in livers of rats fed ZD (P < 0.01) and ZO (P < 0.05) diets. Moreover, ZD and ZO influenced normal growth and development of organs. The results from pituitary cDNA arrays indicated that different Zn levels affect gene expression of appetite-related peptides, including neuropeptide-Y, melanin-concentrating hormone, ghrelin, calcitonin gene-related product, and serotonin.

Conclusion: The present results showed that zinc deficiency has a negative effect on the growth performance and biochemical parameters of rats. The ZO diet increased body weight (P < 0.05) but had no effect (P > 0.05) on food intake, copper/Zn superoxide dismutase activity, and intestinal morphology. The ZD diet decreased rat food intake by regulating appetite-related gene expression in the pituitary gland.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nut.2005.07.007DOI Listing

Publication Analysis

Top Keywords

food intake
16
biochemical parameters
12
gene expression
12
body weight
12
growing rats
8
growth performance
8
pituitary cdna
8
rats fed
8
zinc concentrations
8
concentrations 001
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!