Arfaptin 1 and 2 were identified as targets for GTP bound ADP-ribosylation factors (Arfs). Arfaptin 1 had no significant effects on guanine nucleotide binding to Arfs, nor enzymatic activities of guanine nucleotide exchange factor (GEF) and GTPase activating protein (GAP) acting on Arfs. However, arfaptin 1 inhibited Arf activation of cholera toxin and phospholipase D (PLD) in a dose-dependent manner. Only GTP-bound forms of Arf1, 5, and 6 interacted with arfaptin 1 and 2, but GTP-Arf1 showed the strongest binding to the arfaptins. In contrast to the binding of Arfs to arfaptins, GDP-Rac1 or dominant negative Rac1-N17N bound to arfaptin 2, whereas GTP-Rac1 or dominant active Rac1-Q61L did not bind to arfaptin 2. Neither GTP-Rac1 nor GDP-Rac1 bound to arfaptin 1. Based on our observation, we propose that arfaptin 2 is a target for GDP-Rac1 and for GTP-Arf1, and is involved in interactions between the Rac1 and Arfs signaling pathways. This chapter describes methods for investigating the interactions of arfaptins 1 and 2 with GTP- or GDP-liganded Arfs and Rac1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0076-6879(05)04031-0DOI Listing

Publication Analysis

Top Keywords

arfs arfaptin
12
arfaptin
9
adp-ribosylation factors
8
factors arfs
8
guanine nucleotide
8
binding arfs
8
bound arfaptin
8
arfaptin gtp-rac1
8
arfs
7
assays properties
4

Similar Publications

Arfaptins (arfaptin-1 and arfaptin-2/POR1) were originally identified as binding partners of the Arf small GTPases. Both proteins contain a BAR (Bin/Amphiphysin/Rvs) domain, which participates in membrane deformation. Here we show that arfaptins associate with trans-Golgi membranes.

View Article and Find Full Text PDF

Arfaptin 1 and 2 were identified as targets for GTP bound ADP-ribosylation factors (Arfs). Arfaptin 1 had no significant effects on guanine nucleotide binding to Arfs, nor enzymatic activities of guanine nucleotide exchange factor (GEF) and GTPase activating protein (GAP) acting on Arfs. However, arfaptin 1 inhibited Arf activation of cholera toxin and phospholipase D (PLD) in a dose-dependent manner.

View Article and Find Full Text PDF

Studies of the roles of ADP-ribosylation factors and phospholipase D in phorbol ester-induced membrane ruffling.

J Cell Physiol

February 2005

Howard Hughes Medical Institute and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.

In this study, we have explored the roles of ADP-ribosylation factors (ARFs), phospholipase D (PLD) isozymes, and arfaptins in phorbol ester (PMA)-induced membrane ruffling in HeLa cells. PMA stimulation induced ruffling and translocated cortactin to the plasma membrane. The cortactin translocation was inhibited by dominant negative (DN)-ARF6, DN-ARF1, and DN-Rac1, but not by DN-RhoA and DN-Cdc42.

View Article and Find Full Text PDF

Arl1 is a member of the ARF-like protein (Arl) subfamily of small GTPases. Nothing is known about the function of Arl1 except for the fact that it is essential for normal development in Drosophila and that it is associated with the Golgi apparatus. In this study, we first demonstrate that Arl1 is enriched at the trans side of the Golgi, marked by AP-1.

View Article and Find Full Text PDF

Arfophilin is a common target of both class II and class III ADP-ribosylation factors.

Biochemistry

September 2001

Howard Hughes Medical Institute and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.

Arfophilin was first identified as a target protein for GTP-ARF5. The N-terminus of ARF5 (amino acids 2-17), which is distinct from that of class I or class III ARFs, is essential for binding to the C-terminus of arfophilin (amino acids 612-756). This study using GST fusion proteins in pulldown experiments in CHO-K1 cell lysates showed that, unexpectedly, ARF6 also bound to full-length arfophilin or the C-terminus of arfophilin (amino acids 612-756) in a GTP-dependent manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!