Transcription factor cycling on the insulin promoter.

FEBS Lett

School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.

Published: January 2006

Using MIN6 beta-cells and chromatin immunoprecipitation (ChIP) assays, the chronological sequence of binding of MafA, E47/beta2 and PDX-1 to the insulin promoter in living beta-cells were investigated. All four factors were shown to bind to the mouse insulin 2 promoter in a cyclical manner with a periodicity of approximately 10-15 min. The cyclical binding of MafA, E47 and beta2 was largely unaffected by the glucose or insulin concentration in the media. However, the binding and cycling of PDX-1 was markedly abolished in low glucose (1 mM), and this was reversed in the presence of low concentrations of insulin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2005.12.061DOI Listing

Publication Analysis

Top Keywords

insulin promoter
12
binding mafa
8
insulin
5
transcription factor
4
factor cycling
4
cycling insulin
4
promoter min6
4
min6 beta-cells
4
beta-cells chromatin
4
chromatin immunoprecipitation
4

Similar Publications

Rare defects in the promoter region of SLC16A1, the gene encoding monocarboxylate transporter 1 (MCT-1), result in exercise-induced hyperinsulinism. In this disorder inappropriate insulin secretion is triggered by anaerobic exercise with consequent hypoglycaemia. We describe the case of a 41 year old man presenting with a generalised tonic clonic seizure and severe hypoglycaemia following strenuous exercise.

View Article and Find Full Text PDF

FXR-regulated COX6A2 triggers mitochondrial apoptosis of pancreatic β-cell in type 2 diabetes.

Cell Death Dis

December 2024

Diabetes Institute, the Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis ZDSYS, Shenzhen University Medical School, Shenzhen, PR China.

Pancreatic β-cell apoptosis plays a crucial role in the development of type 2 diabetes. Cytochrome c oxidase subunit 6A2 (COX6A2) and Farnesoid X Receptor (FXR) have been identified in pancreatic β-cells, however, whether they are involved in β-cell apoptosis is unclear. Here, we sought to investigate the role of FXR-regulated COX6A2 in diabetic β-cell apoptosis.

View Article and Find Full Text PDF

Aims/hypothesis: The key pancreatic beta cell transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene homologue A (MafA) is critical for the maintenance of mature beta cell function and phenotype. The expression levels and/or activities of MafA are reduced when beta cells are chronically exposed to diabetogenic stress, such as hyperglycaemia (i.e.

View Article and Find Full Text PDF

Sleep deprivation alters hepatic UGT1A9 and propofol metabolism in mice.

Biochem Pharmacol

December 2024

Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China. Electronic address:

Sleep deprivation (SD) causes circadian misalignment, and circadian clock disruption is associated with metabolic diseases such as obesity, insulin resistance, and diabetes. However, the underlying mechanism for SD-induced circadian clock disruption as well as metabolic enzyme changes is still lacking. Here, we developed SD sensitizes mice with disrupted circadian rhythms to demonstrate the regulation role and mechanism of SD in UDP-glucuronosyltransferases (UGTs) expression and the metabolism of corresponding substrates.

View Article and Find Full Text PDF

Aims/hypothesis: Resistin, inducing insulin resistance, is elevated in the sera of individuals with the G-A haplotype at c.-420 C>G (rs1862513) and c.-358 G>A (rs3219175).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!