The ecdysone receptor (EcR) has been used to develop gene switches for conditional regulation of transgene expression in plants and humans. All EcR-based gene switches developed to date for use in plants are monopartate and require micromolar concentrations of ligand for activation of the transgene; this has limited the use of these gene switches. We have developed a Choristoneura fumiferana ecdysone receptor (CfEcR)-based two-hybrid gene switch that works through the formation of a functional heterodimer between EcR and the retinoid X receptor (RXR) upon application of the chemical ligand methoxyfenozide. Methoxyfenozide is already registered for field use with an excellent safety profile, and it has potential as a gene switch ligand for applications in the field. The receptor constructs were prepared by fusing DEF domains (hinge region plus ligand-binding domain) of CfEcR to the GAL4 DNA-binding domain and EF domains (ligand-binding domain) of ultraspiracle from Choristoneura fumiferana (CfUSP) or RXR from Locusta migratoria (LmRXR), Mus musculus (MmRXR) or Homo sapiens (HsRXR) to the VP16 activation domain. These receptor constructs were tested for their ability to induce expression of the luciferase gene placed under the control of 5x GAL4 response elements and -46 35S minimal promoter in tobacco, corn and soybean protoplasts and in transgenic Arabidopsis and tobacco plants. By adopting the two-hybrid format, the sensitivity of the CfEcR gene switch has been improved from micromolar to nanomolar concentrations of methoxyfenozide. The sensitivity of the CfEcR + LmRXR two-hybrid switch was 25 to 625 times greater than the monopartate gene switch, depending on the plant species tested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2005.02628.x | DOI Listing |
EClinicalMedicine
August 2024
Division of Cancer Prevention and Population Sciences, Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Background: Lung cancer screening recommendations employ annual frequency for eligible individuals, despite evidence that it may not be universally optimal. The impact of imposing a structure on the screening frequency remains unknown. The ENGAGE framework, a validated framework that offers fully dynamic, analytically optimal, personalised lung cancer screening recommendations, could be used to assess the impact of screening structure on the effectiveness and efficiency of lung cancer screening.
View Article and Find Full Text PDFis the causative agent of the venereal disease trichomoniasis which infects men and women globally and is associated with serious outcomes during pregnancy and cancers of the human reproductive tract. Trichomonads parasitize a range of hosts in addition to humans including birds, livestock, and domesticated animals. Recent genetic analysis of trichomonads recovered from columbid birds has provided evidence that these parasite species undergo frequent host-switching, and that a current epoch spillover event from columbids likely gave rise to in humans.
View Article and Find Full Text PDFEssential genes, estimated at approximately 20% of the genome, are broadly expressed and required for reproductive success. They are difficult to study, as interfering with their function leads to premature death. Transcription is one of the essential functions of life, and the multi-protein Mediator complex coordinates the regulation of gene expression at nearly every eukaryotic promoter.
View Article and Find Full Text PDFOrganisms with smaller genomes often perform multiple functions using one multi-subunit protein complex. The Silent Information Regulator complex (SIRc) carries out all of the core functions of heterochromatin. SIR complexes first drive the initiation and spreading of histone deacetylation in an iterative manner.
View Article and Find Full Text PDFFront Immunol
December 2024
Blood Group Reference Laboratory, Dalian Blood Center, Dalian, China.
Background: Mutations in the ABO gene, including base insertions, deletions, substitutions, and splicing errors, can result in blood group subgroups associated with the quantity and quality of blood group antigens. Here, we employed third-generation PacBio sequencing to uncover a novel allele arising from an intron splice site mutation, which altered the expected A phenotype to manifest as an Ael phenotype. The study aimed to characterize the molecular mechanism underlying this phenotypic switch.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!