Muscarinic antagonists attenuate neurotensin-stimulated accumbens and striatal dopamine metabolism.

Neuroscience

Department of Pharmacology, Medical School, University of Sherbrooke, Quebec, Canada.

Published: September 1992

The effect of scopolamine and atropine upon the increase in extracellular 3,4-dihydroxyphenylacetic acid induced by central injection of neurotensin was examined in the nucleus accumbens and the striatum of anaesthetized rats using in vivo differential pulse voltammetry with carbon fibre electrodes. Scopolamine (1 and 3 mg/kg, i.p.) and atropine (20 micrograms, i.c.v.) did not alter the 3,4-dihydroxyphenylacetic acid level in the nucleus accumbens or the striatum, measured for 60 min after administration. Neurotensin (10 micrograms, i.c.v.) increased the 3,4-dihydroxyphenylacetic acid peak height in both regions. Pretreatment with scopolamine (1 mg/kg) 15 min before neurotensin injection blocked the increase in extracellular 3,4-dihydroxyphenylacetic acid in the striatum but not in the nucleus accumbens whilst scopolamine (3 mg/kg) partially attenuated the effect of neurotensin in the nucleus accumbens and blocked the increase in 3,4-dihydroxyphenylacetic acid in the striatum. Atropine partially attenuated the effect produced by neurotensin in the nucleus accumbens and blocked the increase in 3,4-dihydroxyphenylacetic acid induced by the peptide in the striatum. However, the increase in extracellular 3,4-dihydroxyphenylacetic acid induced by haloperidol (1 mg/kg, s.c.) was not altered by scopolamine (1 mg/kg) or atropine. Also, the increase in dopamine metabolism in the nucleus accumbens and the striatum after centrally injected haloperidol (10 micrograms, i.c.v.) was not altered by atropine (20 micrograms, i.c.v.). Together, the results demonstrate a functional interaction between muscarinic antagonists and neurotensin on in vivo dopamine metabolism in the nucleus accumbens and the striatum but with a greater effect in the latter region.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0306-4522(92)90250-6DOI Listing

Publication Analysis

Top Keywords

34-dihydroxyphenylacetic acid
28
nucleus accumbens
28
accumbens striatum
16
scopolamine mg/kg
16
micrograms icv
16
dopamine metabolism
12
increase extracellular
12
extracellular 34-dihydroxyphenylacetic
12
acid induced
12
blocked increase
12

Similar Publications

Repeated treatment with methamphetamine leads to an enhancement in the methamphetamine-induced dopamine release and its related behaviors. This phenomenon is called sensitization or reverse tolerance. Protein kinase C (PKC) controls numerous signaling cascades by virtue of its ability to phosphorylate target proteins that include other kinases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!