Unimolecular decomposition of C70(+) and its endohedral cation N@C70(+) were studied by high-resolution mass-analyzed ion kinetic energy (MIKE) spectrometry. Information on the energetics and dynamics of these reactions was extracted. C70(+) dissociates unimolecularly by loss of a C2 unit, whereas N@C70(+) expels the endohedral N atom. Kinetic energy release distributions (KERDs) in these reactions were measured. By use of finite heat bath theory (FHBT), the binding energy for C2 emission from C70(+) and the activation energy for N elimination from N@C70(+) were deduced from KERDs in the light of a recent finding that fragmentation of fullerene cations proceeds via a very loose transition state. The activation energy measured for N extrusion from N@C70(+) was found to be lower than that for C2 evaporation, higher than the value from its neutral molecule N@C70 obtained on the basis of thermal stability measurements, and coincident with the theoretical value. The results provide confirmation that the proposed extrusion mechanism in which the N atom escapes from the cage via formation of an aza-bridged intermediate is correct.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200501119DOI Listing

Publication Analysis

Top Keywords

kinetic energy
12
activation energy
12
energy release
8
c70+ endohedral
8
endohedral cation
8
cation n@c70+
8
energy
6
n@c70+
5
c70+
4
release c70+
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!