We set out to identify molecular mechanisms underlying the onset of necrotic Ca(2+) overload, triggered in two epithelial cell lines by oxidative stress or metabolic depletion. As reported earlier, the overload was inhibited by extracellular Ca(2+) chelation and the cation channel blocker gadolinium. However, the surface permeability to Ca(2+) was reduced by 60%, thus discarding a role for Ca(2+) channel/carrier activation. Instead, we registered a collapse of the plasma membrane Ca(2+) ATPase (PMCA). Remarkably, inhibition of the Na(+)/K(+) ATPase rescued the PMCA and reverted the Ca(2+) rise. Thermodynamic considerations suggest that the Ca(2+) overload develops when the Na(+)/K(+) ATPase, by virtue of the Na(+) overload, clamps the ATP phosphorylation potential below the minimum required by the PMCA. In addition to providing the mechanism for the onset of Ca(2+) overload, the crosstalk between cation pumps offers a novel explanation for the role of Na(+) in cell death.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.cdd.4401852DOI Listing

Publication Analysis

Top Keywords

ca2+ overload
16
ca2+
9
cation pumps
8
onset necrotic
8
necrotic ca2+
8
na+/k+ atpase
8
overload
6
atp steal
4
steal cation
4
pumps mechanism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!