A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Loss of lipoprotein lipase-derived fatty acids leads to increased cardiac glucose metabolism and heart dysfunction. | LitMetric

Long-chain fatty acids (FAs) are the predominant energy substrate utilized by the adult heart. The heart can utilize unesterified FA bound to albumin or FA obtained from lipolysis of lipoprotein-bound triglyceride (TG). We used heart-specific lipoprotein lipase knock-out mice (hLpL0) to test whether these two sources of FA are interchangeable and necessary for optimal heart function. Hearts unable to obtain FA from lipoprotein TG were able to compensate by increasing glucose uptake, glycolysis, and glucose oxidation. HLpL0 hearts had decreased expression of pyruvate dehydrogenase kinase 4 and increased cardiomyocyte expression of glucose transporter 4. Conversely, FA oxidation rates were reduced in isolated perfused hLpL0 hearts. Following abdominal aortic constriction expression levels of genes regulating FA and glucose metabolism were acutely up-regulated in control and hLpL0 mice, yet all hLpL0 mice died within 48 h of abdominal aortic constriction. Older hLpL0 mice developed cardiac dysfunction characterized by decreased fractional shortening and interstitial and perivascular fibrosis. HLpL0 hearts had increased expression of several genes associated with transforming growth factor-beta signaling. Thus, long term reduction of lipoprotein FA uptake is associated with impaired cardiac function despite a compensatory increase in glucose utilization.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M509890200DOI Listing

Publication Analysis

Top Keywords

hlpl0 hearts
12
hlpl0 mice
12
fatty acids
8
glucose metabolism
8
mice hlpl0
8
abdominal aortic
8
aortic constriction
8
hlpl0
7
glucose
6
loss lipoprotein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!