Measurement of in vivo multi-component T2 relaxation times for brain tissue using multi-slice T2 prep at 1.5 and 3 T.

Magn Reson Imaging

Department of Radiology, Center for Molecular and Functional Imaging, University of California, San Francisco, CA 94107, USA.

Published: January 2006

The objective of this study was to implement a clinically relevant multi-slice multi-echo imaging sequence in order to quantify multi-component T2 relaxation times for normal volunteers at both 1.5 and 3 T. Multi-echo data were fitted using a nonnegative least square algorithm. Twelve echo data with nonlinear echo sampling were acquired using a receive-only eight-channel phased array coil and volume head coil for phantoms and normal volunteers, and compared to 32-echo data with linear echo sampling. It was observed that the performance of the 180 degrees refocusing trains was more spatially uniform for the receive-only eight-channel phased array coil than for the head coil, particularly at 3 T. The phantom study showed that the estimated T2 relaxation times were accurate and reproducible for both single- and multi-slice acquisition from a commercial phantom with known T2 relaxation times. Short T2 components (T2 <50 ms) were mainly observed within the white matter for normal volunteers, and the fraction of short T2 water components (i.e., myelin water) was 7-12% of total water. It was observed that the calculated myelin water fraction map from the nonlinearly sampled 12-echo data was comparable with that from the linearly sampled 32-echo data. Quantification of T2 relaxation times from multi-slice images was accomplished with a clinically acceptable scan times (16 min) for normal volunteers by using a nonselective T2 prep imaging sequence. The use of the eight-channel head coil involved more accurate quantification of T2 relaxation times particularly when the number of echoes was limited.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2005.10.016DOI Listing

Publication Analysis

Top Keywords

relaxation times
16
multi-component relaxation
8
normal volunteers
8
echo sampling
8
receive-only eight-channel
8
eight-channel phased
8
phased array
8
array coil
8
head coil
8
measurement vivo
4

Similar Publications

Magnetic resonance imaging (MRI) is frequently used to monitor disease progression in multiple sclerosis (MS). This study aims to systematically evaluate the correlation between MRI measures and histopathological changes, including demyelination, axonal loss, and gliosis, in the central nervous system of MS patients. We systematically reviewed post-mortem histological studies evaluating myelin density, axonal loss, and gliosis using quantitative imaging in MS.

View Article and Find Full Text PDF

Molecular miscibility of ASD blend components: an evaluation of (the added value of) solid state NMR spectroscopy and relaxometry.

J Pharm Sci

January 2025

Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium. Electronic address:

In order to evaluate the stability of an amorphous solid dispersion (ASD) it is crucial to be able to accurately determine whether the ASD components are homogeneously mixed or not. Several solid-state analysis techniques are at the disposal of the formulation scientist, such as for example modulated differential scanning calorimetry (mDSC) and solid-state nuclear magnetic resonance spectroscopy (ssNMR). ssNMR is a robust, versatile, and accurate analysis technique with a large number of application possibilities.

View Article and Find Full Text PDF

Nuclear Magnetic Resonance Study of Monoclonal Antibodies Near an Oil-Water Interface.

J Pharm Sci

January 2025

Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA, 32310; Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA, 32310. Electronic address:

Monoclonal antibodies (mAb) represent an important class of biologic therapeutics that can treat a variety of diseases including cancer, autoimmune disorders or respiratory conditions (e.g. COVID-19).

View Article and Find Full Text PDF

Understanding the Topology Freezing Temperature of Vitrimer-Like Materials through Complementary Structural and Rheological Analyses for Phase-Separated Network.

ACS Macro Lett

January 2025

Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi 466-8555, Japan.

Vitrimers are sustainable cross-linked polymers characterized by an associative bond exchange mechanism within their network. A well-known feature of vitrimers is the Arrhenius dependence of the viscosity or relaxation time. Another important aspect is the existence of a topology-freezing temperature (), which represents a transition between the viscoelastic solid state and the malleable viscoelastic liquid state.

View Article and Find Full Text PDF

Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!