The coxsackievirus and adenovirus receptor (CAR) is a transmembrane protein important for viral binding to target cells. Using RT-PCR, Western analysis, GST pull-down assay and indirect immunofluorescence, it was shown that CAR is expressed in male germ cells from mice, rats, and humans. CAR was detected in round spermatids in the testis as well as in purified, mature spermatozoa. The two membrane-bound isoforms of CAR occupied different subcellular sites in the acrosomal region of the spermatozoa. CAR was exposed on the surface of acrosome-reacted, but not acrosome-intact cells. Two CAR-binding proteins belonging to the ligand-of-numb protein-X (LNX) family also occupied distinct regions in spermatozoa. Finally, co-immunoprecipitation experiments demonstrated an interaction between CAR and JAM-C, a protein required for spermatid differentiation. Together, these findings imply a function for CAR in male fertility. The results also suggest that CAR in spermatozoa is inaccessible to adenovirus-based gene therapy vectors, and that the risk of germ line infection therefore is low.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2005.11.030DOI Listing

Publication Analysis

Top Keywords

car
9
coxsackievirus adenovirus
8
adenovirus receptor
8
receptor car
8
car expressed
8
expressed male
8
male germ
8
germ cells
8
cells
4
cells forms
4

Similar Publications

UV-A exposure is a major risk factor for melanoma, nonmelanoma skin cancer, photoaging, and exacerbation of photodermatoses. Since people spend considerable time in cars daily, inadequate UV-A attenuation by car windows can significantly contribute to the onset or exacerbation of these skin diseases. Given recent market trends in the automobile industry and known impact of car windows on cumulative lifelong UV damage to the skin, there is a need to comparatively evaluate UV transmission across windows in electric vehicles (EV), hybrid vehicles (HV), and gas vehicles (GV) as well as variability based on year of manufacture and mileage to inform car manufacturers and consumers of the potential for UV exposure to the skin based on vehicle.

View Article and Find Full Text PDF

Anti-CD19 chimeric antigen receptor T cells (CAR) are a well-established treatment option for children and young adults suffering from relapsed/refractory B-lineage acute lymphoblastic leukemia. Bridging therapy is used to control disease prior to start of lymphodepletion before CAR infusion and thereby improve efficacy of CAR therapy. However, the effect of different bridging strategies on outcome, side effects and response to CAR therapy is still poorly understood.

View Article and Find Full Text PDF

Myoelectric pattern recognition with virtual reality and serious gaming improves upper limb function in chronic stroke: a single case experimental design study.

J Neuroeng Rehabil

January 2025

Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Vita Stråket 12, Floor 4, 41346, Gothenburg, Sweden.

Background: Myoelectric pattern recognition (MPR) combines multiple surface electromyography channels with a machine learning algorithm to decode motor intention with an aim to enhance upper limb function after stroke. This study aims to determine the feasibility and preliminary effectiveness of a novel intervention combining MPR, virtual reality (VR), and serious gaming to improve upper limb function in people with chronic stroke.

Methods: In this single case experimental A-B-A design study, six individuals with chronic stroke and moderate to severe upper limb impairment completed 18, 2 h sessions, 3 times a week.

View Article and Find Full Text PDF

The clinical potential of current chimeric antigen receptor-engineered T (CAR-T) cell therapy is hampered by its autologous nature that poses considerable challenges in manufacturing, costs and patient selection. This spurs demand for off-the-shelf therapies. Here we introduce an ex vivo feeder-free culture method to differentiate gene-engineered hematopoietic stem and progenitor (HSP) cells into allogeneic invariant natural killer T (NKT) cells and their CAR-armed derivatives (CAR-NKT cells).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!