Escherichia coli O157 outbreak associated with fresh unpasteurized goats' cheese.

Epidemiol Infect

Institut de Veille Sanitaire, Département des Maladies Infectieuses, Saint Maurice, France.

Published: February 2006

A family cluster of three cases of Escherichia coli O157 infection was identified in France. Two cases developed haemolytic-uraemic syndrome. The source was fresh unpasteurized goats' cheese, produced by an independent producer. Three E. coli O157 strains, isolated from one HUS case and faeces of one cow and one goat, were indistinguishable by toxin type and PFGE pattern.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2870372PMC
http://dx.doi.org/10.1017/S0950268805004887DOI Listing

Publication Analysis

Top Keywords

coli o157
12
escherichia coli
8
fresh unpasteurized
8
unpasteurized goats'
8
goats' cheese
8
o157 outbreak
4
outbreak associated
4
associated fresh
4
cheese family
4
family cluster
4

Similar Publications

Filter-assisted sample preparation for on-site detection using a bi-functional linker-based biosensor demonstrated with Escherichia coli O157:H7.

Food Chem

December 2024

Department of Agricultural Biotechnology, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul, 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul, 08826, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul, 08826, Republic of Korea. Electronic address:

This study presents an advanced food detection platform that integrates filter-assisted sample preparation (FASP) with a bifunctional linker-based biosensor for on-site detection of Escherichia coli O157:H7 as a model case. FASP isolates bacteria from food samples through multi-filter preprocessing, significantly enhancing the specificity, sensitivity, and reproducibility of the subsequent biosensor analysis. This platform can detect E.

View Article and Find Full Text PDF

Synergistic effect of naringenin and mild heat for inactivation of E. coli O157:H7, S. Typhimurium, L. monocytogenes, and S. aureus in peptone water and cold brew coffee.

Int J Food Microbiol

January 2025

Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

This study aimed to investigate the bactericidal effect of naringenin (NG), a plant-derived flavonoid, and its synergistic effect with mild heat (MH) treatment at 50 °C in peptone water (PW) and ready-to-drink cold brew coffee (RDC). Among various NG concentrations (1-20 mM), 10 mM NG resulted in the greatest inactivation for Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus. In RDC, NG + MH treatment resulted in a 5-8-log reduction in all pathogens after 10 min, except for S.

View Article and Find Full Text PDF

Shiga toxin-producing Escherichia coli (STEC) is one of the major pathogens responsible for severe foodborne infections, and the common serotypes include E. coli O157, O26, O45, O103, O111, O121, and O145. Vaccination has the potential to prevent STEC infections, but no licensed vaccines are available to provide protection against multiple STEC infections.

View Article and Find Full Text PDF

CRISPR/Cas Systems as Diagnostic and Potential Therapeutic Tools for Enterohemorrhagic .

Arch Immunol Ther Exp (Warsz)

January 2025

Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA.

Following its discovery as an adaptive immune system in prokaryotes, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been developed into a multifaceted genome editing tool. This review compiles findings aimed at implementation of this technology for selective elimination or attenuation of enterohemorrhagic (EHEC). EHEC are important zoonotic foodborne pathogens that cause hemorrhagic colitis and can progress to the life-threatening hemolytic uremic syndrome (HUS).

View Article and Find Full Text PDF

Background/objectives: Pathogen inactivation and harmful gene destruction from water just before drinking is the last line of defense to protect people from waterborne diseases. However, commonly used disinfection methods, such as chlorination, ultraviolet irradiation, and membrane filtration, experience several challenges such as continuous chemical dosing, the spread of antibiotic resistance genes (ARGs), and intensive energy consumption.

Methods: Here, we perform a simultaneous elimination of pathogens and ARGs in drinking water using local electric fields and in-situ generated trace copper ions (LEF-Cu) without external chemical dosing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!