Chronic skeletal muscle ventricle (SMV) stability is essential for clinical implementation. SMVs in animal models have chronically expanded or collapsed when exposed to physiologic pressures. SMV wall stress is a more appropriate indicator than pressure or geometry to compare SMVs between studies. SMV wall tensions during conditioning were determined for SMVs that collapsed, expanded, or were isovolumetric in a previous study. Wall stresses in SMVs that expanded (2.76 +/- 0.803 N/cm(2)) were significantly greater than isovolumetric SMVs (0.89 +/- 0.450) and SMVs that collapsed (0.88 +/- 0.451). These data support the existence of minimum and maximum wall stresses for SMV volume stability and provide empiric estimates for SMV design. Scaling SMV designs from animal models with smaller volumes and similar pressures may result in greater wall stresses in clinical designs. Therefore, the use of volume limiting implants or an isovolumetric conditioning phase to increase the wall stress expansion threshold may be required.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1525-1594.2006.00177.xDOI Listing

Publication Analysis

Top Keywords

wall stresses
12
skeletal muscle
8
muscle ventricle
8
animal models
8
smv wall
8
wall stress
8
smvs collapsed
8
wall
7
smv
6
smvs
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!