Three-dimensional model of cytochrome P450 human aromatase.

J Enzyme Inhib Med Chem

Department de Pharmacochimie, Biomolecules et Cibles Thérapeutiques, UPRES EA1155, UFR Sciences Pharmaceutiques, 1 rue Gaston Veil, F-44035 Nantes cedex 1, France.

Published: December 2005

A three-dimensional (3-D) structure of human aromatase (CYP 19) was modeled on the basis of the crystal structure of rabbit CYP2C5, the first solved X-ray structure of an eukaryotic cytochrome P450 and was evaluated by docking S-fadrozole and the steroidal competitive inhibitor (19R)-10-thiiranylestr-4-ene-3,17-dione, into the enzyme active site. According to a previous pharmacophoric hypothesis described in the literature, the cyano group of S-fadrozole partially mimics the steroid backbone C(17) carbonyl group of (19R)-10-thiiranylestr-4-ene-3,17-dione, and was oriented in a favorable position for H-bonding with the newly identified positively charged residues Lys 119 and Arg435. In addition, this model is consistent with the recent combined mutagenesis/modeling studies already published concerning the roles ofAsp309 and His480 in the aromatization of the steroid A ring.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14756360500220574DOI Listing

Publication Analysis

Top Keywords

cytochrome p450
8
human aromatase
8
three-dimensional model
4
model cytochrome
4
p450 human
4
aromatase three-dimensional
4
three-dimensional 3-d
4
3-d structure
4
structure human
4
aromatase cyp
4

Similar Publications

Deep Learning of CYP450 Binding of Small Molecules by Quantum Information.

J Chem Inf Model

January 2025

Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States.

Drug-drug interaction can lead to diminished therapeutic effects or increased toxicity, posing significant risks, especially in polypharmacy, and cytochrome P450 plays an indispensable role in this interaction. Cytochrome P450, responsible for the metabolism and detoxification of most drugs, metabolizes about 90% of Food and Drug Administration-approved drugs, making early detection of potential drug-drug interactions. Over the years, in-silico modeling has become a valuable tool for predicting drug-drug interactions.

View Article and Find Full Text PDF

Metabolomics and network pharmacology approach to identify potential bioactive compounds from Trichoderma sp. against oral squamous cell carcinoma.

Comput Biol Chem

January 2025

Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; Elicure, 12, Gyeongyeol-ro 17 beon-gil, Seo-gu, Gwangju, Republic of Korea. Electronic address:

This study aimed to profile metabolites from five Trichoderma strains and assess their cytotoxic and pharmacological activities, particularly targeting oral squamous cell carcinoma (OSCC). UHPLC-TOF-MS analysis revealed the presence of 25 compounds, including heptelidic acid, viridiol isomers, and sorbicillinol from the different Trichoderma extracts. Pharmacokinetic analysis showed moderate permeability and low interaction with P-glycoprotein, suggesting good drug absorption with minimal interference in cellular uptake.

View Article and Find Full Text PDF

Pylb-based overexpression of cytochrome P450 in Bacillus subtilis 168.

Enzyme Microb Technol

January 2025

Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environment Research Unit, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:

Inducer-free expression systems are promising tools for biorefinery because they can reduce the reliance on inducers, reducing production costs and simplifying processes. Owing to their broad range of substrate structures and catalytic reactions, cytochrome P450s are promising biocatalysts to produce value-added compounds. However, unsuitable levels of cytochrome P450 expression could result in cell stress, affecting the efficiency of the biocatalyst.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!